Improved whale optimization based band selection for hyperspectral remote sensing image classification

高光谱成像 计算机科学 小波 小波变换 遥感 人工智能 离散小波变换 模式识别(心理学) 光谱带 地质学
作者
Prabukumar Manoharan,Phaneendra Kumar L.N. Boggavarapu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:119: 103948-103948 被引量:16
标识
DOI:10.1016/j.infrared.2021.103948
摘要

Classification of hyperspectral images is one of the emerging areas of remote sensing. The high volume of the data, contiguous acquisition and correlation among the bands pose problems in the extraction of informative bands. To address the issues and to make use of the fast multi-resolution analysis technique for the remote sensing images, a new framework is designed with the inclusion of wavelet analysis. Here, a threefold strategy is implemented. In the first fold, a modified whale optimization algorithm by mimicking the hunting behavior of humpback whale is implemented for the selection of informative band set with nonlinear function and tournament selection. In the second fold, a fast and multi-resolution analysis technique, a three dimensional discrete wavelet transform, is implemented to elucidate the variation among the selected bands by convolving in three dimensions including spectral dimension. Then, a convolution neural network with three dimensional convolutions is trained by fusing the spectral and wavelet based spatial features in the third fold. The performance of the proposed architecture is tested with the state of the art methods on Indian Pines, University of Pavia and Salinas datasets. The classification maps of the proposed method show the effectiveness of the wavelet based approach and reported an overall accuracy of 99.44%, 99.85% and 99.83% on the three datasets respectively. Also, the Mean Spectral Divergence (MSD) measure values with the discrete wavelet transform on the datasets show low redundancy between the bands and hence improved the classification accuracy of the hyperspectral images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助SongNan_Ding采纳,获得10
1秒前
九日完成签到,获得积分10
2秒前
听雨的猫发布了新的文献求助10
2秒前
雷雷完成签到 ,获得积分10
2秒前
小昔应助瑞雪晴天采纳,获得10
3秒前
lty001发布了新的文献求助10
3秒前
3秒前
4秒前
黄凯发布了新的文献求助10
4秒前
香蕉觅云应助Cakeat采纳,获得10
5秒前
5秒前
zhangpeipei完成签到,获得积分10
5秒前
科研通AI2S应助7777采纳,获得10
6秒前
哈哈哈完成签到,获得积分20
7秒前
bc举报某某求助涉嫌违规
7秒前
pluto应助YYMM采纳,获得10
8秒前
8秒前
小蘑菇应助青柠采纳,获得10
8秒前
彭于晏应助张怀民采纳,获得10
8秒前
9秒前
周雪妍发布了新的文献求助10
10秒前
往复发布了新的文献求助10
10秒前
今后应助朴素语风采纳,获得10
10秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
无语发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
SYLH应助花卷采纳,获得10
11秒前
酷波er应助ssy采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814969
求助须知:如何正确求助?哪些是违规求助? 3359011
关于积分的说明 10399641
捐赠科研通 3076603
什么是DOI,文献DOI怎么找? 1689918
邀请新用户注册赠送积分活动 813415
科研通“疑难数据库(出版商)”最低求助积分说明 767633