亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Correspondence Matching of Corneal Reflections for Eye Tracking Using Deep Learning

计算机视觉 人工智能 计算机科学 眼动 凝视 BitTorrent跟踪器 国际空间站的视线跟踪 旋转(数学) 光学 物理
作者
Soumil Chugh,Braiden Brousseau,Jonathan Rose,Moshe Eizenman
标识
DOI:10.1109/icpr48806.2021.9412066
摘要

Eye tracking systems that estimate the point-of-gaze are essential in extended reality (XR) systems as they enable new interaction paradigms and technological improvements. It is important for these systems to maintain accuracy when the headset moves relative to the head (known as device slippage) due to head movements or user adjustment. One of the most accurate eye tracking techniques, which is also insensitive to shifts of the system relative to the head, uses two or more infrared (IR) light emitting diodes to illuminate the eye and an IR camera to capture images of the eye. An essential step in estimating the point-of-gaze in these systems is the precise determination of the location of two or more corneal reflections (virtual images of the IR-LEDs that illuminate the eye) in images of the eye. Eye trackers tend to have multiple light sources to ensure at least one pair of reflections for each gaze position. The use of multiple light sources introduces a difficult problem: the need to match the corneal reflections with the corresponding light source over the range of expected eye movements. Corneal reflection detection and matching often fail in XR systems due to the proximity of camera and steep illumination angles of light sources with respect to the eye. The failures are caused by corneal reflections having varying shape and intensity levels or disappearance due to rotation of the eye, or the presence of spurious reflections. We have developed a fully convolutional neural network, based on the UNET architecture, that solves the detection and matching problem in the presence of spurious and missing reflections. Eye images of 25 people were collected in a virtual reality headset using a binocular eye tracking module consisting of five infrared light sources per eye. A set of 4,000 eye images were manually labelled for each of the corneal reflections, and data augmentation was used to generate a dataset of 40,000 images. The network is able to correctly identify and match 91% of corneal reflections present in the test set. This is comparable to a state-of-the-art deep learning system, but our approach requires 33 times less memory and executes 10 times faster. The proposed algorithm, when used in an eye tracker in a VR system, achieved an average mean absolute gaze error of 1°. This is a significant improvement over the state-of-the-art learning-based XR eye tracking systems that have reported gaze errors of 2-3°.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsmj23完成签到 ,获得积分0
53秒前
打打应助草木青采纳,获得10
1分钟前
2分钟前
草木青发布了新的文献求助10
2分钟前
喵喵完成签到 ,获得积分10
2分钟前
彭于晏应助duoduoqian采纳,获得10
3分钟前
3分钟前
草木青完成签到,获得积分10
3分钟前
duoduoqian发布了新的文献求助10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
binyao2024完成签到,获得积分10
4分钟前
Saven完成签到,获得积分10
4分钟前
小白菜完成签到,获得积分10
5分钟前
5分钟前
学术通zzz发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
青出于蓝蔡完成签到,获得积分10
6分钟前
科研通AI5应助冉亦采纳,获得10
6分钟前
6分钟前
6分钟前
冉亦发布了新的文献求助10
6分钟前
希望天下0贩的0应助immortal采纳,获得10
6分钟前
英俊的铭应助WATeam采纳,获得10
7分钟前
7分钟前
WATeam发布了新的文献求助10
7分钟前
四斤瓜完成签到 ,获得积分10
7分钟前
英俊的铭应助月亮987采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
E7发布了新的文献求助10
7分钟前
7分钟前
月亮987发布了新的文献求助10
7分钟前
月亮987完成签到,获得积分10
8分钟前
8分钟前
8分钟前
学术通zzz发布了新的文献求助10
8分钟前
9分钟前
一颗忧伤的覆盆子完成签到,获得积分10
9分钟前
科研通AI5应助duoduoqian采纳,获得10
9分钟前
9分钟前
平淡的翅膀完成签到 ,获得积分10
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359351
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713