Threatened by AI: Analyzing Users’ Responses to the Introduction of AI in a Crowd-sourcing Platform

濒危物种 众包 计算机科学 数据科学 计算机安全 互联网隐私 业务 人工智能 生物 生态学 栖息地
作者
Mikhail Lysyakov,Siva Viswanathan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.3758338
摘要

As Artificial Intelligence (AI) solutions are being rapidly deployed, they increasingly compete with human labor. This study examines designers’ strategies in response to the threat from the introduction of an AI system for simple logo designs in a crowdsourcing design platform. We study designers who were active both before and after the introduction of the AI system to understand their responses to the threat from AI. Our study is informed by the theories of threat, specifically the Protection Motivation Theory which posits that individuals will respond to threats based on their capabilities. We find that while some designers who had primarily participated in contests for lower-tier, simple logo designs leave the platform, others continue to participate in these contests. Interestingly, designers who have higher capabilities, evidenced by their prior participation in more-complex higher-tier logo-design contests and contests in other non-logo categories, move away from the primary locus of threat in the lower-tier – and switch to the more-complex contests after the introduction of the AI system. More interestingly, we find that successful designers respond differently from unsuccessful designers on the platform. While unsuccessful designers increase participation across multiple contests, they do not change the quality (emotional content and complexity) of their design submissions after the AI launch. In contrast, successful designers become more focused (i.e., they substantially increase the number of submissions within a contest) and more quality-oriented (i.e., they increase emotional content and complexity of their design submissions), after the AI launch. These findings have important implications for the nascent research on the impacts of AI on users in a crowdsourcing platform and for the design of such platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助白菜也挺贵采纳,获得30
刚刚
自由无声完成签到,获得积分10
1秒前
彭剑封发布了新的文献求助10
1秒前
烟花应助小张爱学习采纳,获得10
1秒前
FashionBoy应助WANGCHU采纳,获得10
2秒前
2秒前
123发布了新的文献求助10
2秒前
闹闹发布了新的文献求助10
3秒前
于梦鸽关注了科研通微信公众号
3秒前
4秒前
AAA完成签到,获得积分10
4秒前
5秒前
yyh发布了新的文献求助10
5秒前
Catherine发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助ddz采纳,获得30
7秒前
7秒前
天秤狮子天生一对完成签到,获得积分10
8秒前
南提发布了新的文献求助10
9秒前
小鱼完成签到,获得积分20
9秒前
远离完成签到 ,获得积分10
9秒前
ago发布了新的文献求助10
9秒前
10秒前
张滢蕊发布了新的文献求助10
10秒前
10秒前
10秒前
充电宝应助感动澜采纳,获得20
11秒前
11秒前
12秒前
13秒前
ZHANG发布了新的文献求助10
15秒前
123完成签到,获得积分20
15秒前
16秒前
奋斗的海豚完成签到 ,获得积分10
16秒前
勤恳的眼神完成签到 ,获得积分10
17秒前
645654564发布了新的文献求助10
17秒前
诗诗好饿完成签到,获得积分10
17秒前
尼尼发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4678157
求助须知:如何正确求助?哪些是违规求助? 4055195
关于积分的说明 12539511
捐赠科研通 3749595
什么是DOI,文献DOI怎么找? 2071077
邀请新用户注册赠送积分活动 1100067
科研通“疑难数据库(出版商)”最低求助积分说明 979567