亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning

差别隐私 计算机科学 杠杆(统计) 推论 数据挖掘 原始数据 对手 信息隐私 联合学习 机器学习 人工智能 算法 计算机安全 程序设计语言
作者
Xue Yang,Yan Feng,Weijun Fang,Jun Shao,Xiaohu Tang,Shu-Tao Xia,Rongxing Lu
标识
DOI:10.1145/3485447.3512233
摘要

Although federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data, the adversary still can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks. To defend against such privacy attacks, many noises perturbed methods (like differential privacy or CountSketch matrix) have been widely designed. However, the strong defence ability and high learning accuracy of these schemes cannot be ensured at the same time, which will impede the wide application of FL in practice (especially for medical or financial institutions that require both high accuracy and strong privacy guarantee). To overcome this issue, we propose an efficient model perturbation method for federated learning to defend against reconstruction and membership inference attacks launched by curious clients. On the one hand, similar to the differential privacy, our method also selects random numbers as perturbed noises added to the global model parameters, and thus it is very efficient and easy to be integrated in practice. Meanwhile, the random selected noises are positive real numbers and the corresponding value can be arbitrarily large, and thus the strong defence ability can be ensured. On the other hand, unlike differential privacy or other perturbation methods that cannot eliminate added noises, our method allows the server to recover the true aggregated gradients by eliminating the added noises. Therefore, our method does not hinder learning accuracy at all. Extensive experiments demonstrate that for both regression and classification tasks, our method achieves the same accuracy as non-private approaches and outperforms the state-of-the-art defence schemes. Besides, the defence ability of our method against reconstruction and membership inference attack is significantly better than the state-of-the-art related defence schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到 ,获得积分10
17秒前
38秒前
研友_892kOL发布了新的文献求助10
42秒前
礼礼完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助成就的笑翠采纳,获得10
1分钟前
xiaa0618完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
无限的千凝完成签到 ,获得积分10
2分钟前
博ge完成签到 ,获得积分10
2分钟前
苑阿宇完成签到 ,获得积分10
2分钟前
科研通AI2S应助成就的笑翠采纳,获得10
2分钟前
2分钟前
jackychen36完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
深情安青应助成就的笑翠采纳,获得10
3分钟前
Hyphen发布了新的文献求助10
3分钟前
3分钟前
3分钟前
顾矜应助成就的笑翠采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
ylyao完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
Jhon_323发布了新的文献求助30
5分钟前
33发布了新的文献求助10
5分钟前
umesh完成签到,获得积分10
5分钟前
Noob_saibot完成签到,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124484
求助须知:如何正确求助?哪些是违规求助? 3662388
关于积分的说明 11590322
捐赠科研通 3362598
什么是DOI,文献DOI怎么找? 1847697
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849