Prediction of drug–disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets

网络拓扑 计算机科学 疾病 药品 拓扑(电路) 计算生物学 计算机网络 生物 医学 药理学 数学 内科学 组合数学
作者
Ling Gao,Hui Cui,Tiangang Zhang,Nan Sheng,Ping Xuan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:12
标识
DOI:10.1093/bib/bbab467
摘要

Abstract Motivation The development process of a new drug is time-consuming and costly. Thus, identifying new uses for approved drugs, named drug repositioning, is helpful for speeding up the drug development process and reducing development costs. Existing drug-related disease prediction methods mainly focus on single or multiple drug–disease heterogeneous networks. However, heterogeneous networks, and drug subnets and disease subnet contained in heterogeneous networks cover the common topology information between drug and disease nodes, the specific information between drug nodes and the specific information between disease nodes, respectively. Results We design a novel model, CTST, to extract and integrate common and specific topologies in multiple heterogeneous networks and subnets. Multiple heterogeneous networks composed of drug and disease nodes are established to integrate multiple kinds of similarities and associations among drug and disease nodes. These heterogeneous networks contain multiple drug subnets and a disease subnet. For multiple heterogeneous networks and subnets, we then define the common and specific representations of drug and disease nodes. The common representations of drug and disease nodes are encoded by a graph convolutional autoencoder with sharing parameters and they integrate the topological relationships of all nodes in heterogeneous networks. The specific representations of nodes are learned by specific graph convolutional autoencoders, respectively, and they fuse the topology and attributes of the nodes in each subnet. We then propose attention mechanisms at common representation level and specific representation level to learn more informative common and specific representations, respectively. Finally, an integration module with representation feature level attention is built to adaptively integrate these two representations for final association prediction. Extensive experimental results confirm the effectiveness of CTST. Comparison with six latest methods and case studies on five drugs further verify CTST has the ability to discover potential candidate diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘珍荣完成签到,获得积分10
1秒前
专注的含蕊完成签到,获得积分10
2秒前
仁和完成签到,获得积分10
2秒前
wanci应助蜚蜚采纳,获得10
2秒前
3秒前
大大怪发布了新的文献求助10
3秒前
丢丢发布了新的文献求助10
5秒前
abc发布了新的文献求助10
5秒前
Young完成签到,获得积分10
5秒前
7秒前
10秒前
14秒前
Skywings发布了新的文献求助200
14秒前
mamm发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
luan关注了科研通微信公众号
17秒前
18秒前
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
王佳应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
mgh完成签到,获得积分20
21秒前
吕武全发布了新的文献求助10
22秒前
22秒前
小新发布了新的文献求助10
23秒前
Adrenaline发布了新的文献求助10
23秒前
CipherSage应助lune采纳,获得10
23秒前
25秒前
12345678发布了新的文献求助30
27秒前
无心的紫山完成签到,获得积分10
28秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826623
求助须知:如何正确求助?哪些是违规求助? 3368959
关于积分的说明 10453002
捐赠科研通 3088482
什么是DOI,文献DOI怎么找? 1699152
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770136