亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transformer-based deep learning model for preoperative prediction of lympho-vascular invasion in laryngeal squamous cell carcinoma: a multicenter study

医学 人工智能 随机森林 深度学习 接收机工作特性 百分位 列线图 放射科 逻辑回归 机器学习 试验装置 无线电技术 多层感知器 分割 放射治疗 预处理器 预测建模 放射治疗计划 多中心研究 一致性 核医学 人工神经网络 混淆矩阵 多元分析 曲线下面积 决策树 卷积神经网络 交叉验证 多中心试验
作者
Helei Yan,Jiaxin Yao,Jing Hou,Lei Liu,Yi-Zhen Li,Guizhi Wang,Shengyi Dou,YunYun Wang,Xiaoping Yu,Yan Gao,Donghai Huang,Xingwei Wang,Yuan-Zheng Qiu,Xin Zhang,Yong Liu,Shanhong Lu
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000004012
摘要

Background: To explore and compare the potential value of radiomics models based on contrast-enhanced computed tomography (CT) for noninvasive preoperative prediction of lymphovascular invasion (LVI) in laryngeal squamous cell carcinoma (LSCC). Materials and Methods: This multicenter diagnostic study retrospectively enrolled LSCC patients from three tertiary hospitals who underwent surgical treatment. Standardized preprocessing was performed on the CT images, followed by region-of-interest (ROI) segmentation and extraction of traditional radiomics features and deep learning features. Features were selected using least absolute shrinkage and selection operator (LASSO) regression. Traditional radiomics models and deep learning radiomics models (DLR) were established using logistic regression, random forest, and multilayer perceptron algorithms, respectively. A transformer-based hybrid model was developed by integrating radiomics and deep learning features. The predictive performance of the three types of models was evaluated and compared using the area under the curve (AUC), decision curve analysis (DCA), sample probability distribution histograms, confusion matrices, calibration curves, net reclassification index (NRI), and integrated discrimination improvement (IDI). Results: A total of 1,024 patients were allocated to the training set (center1, n = 291), internal validation set (n = 126), and external test sets (center 2, n = 437; center 3, n = 170). Three radiomics models and three DLR models were constructed, and the optimal performance was observed in the DLR_ Random Forest model (AUC: 0.812-0.867). The transformer hybrid model demonstrated superior predictive performance, with AUC values of 0.881, 0.843, 0.833, and 0.836 in the training, internal validation, and external test sets, respectively. Decision curve analysis indicated a higher net benefit for the transformer model, along with an improved NRI and IDI. Conclusion: Radiomics models based on CT images exhibit potential for noninvasive prediction of LVI in LSCC, with the transformer hybrid model achieving the highest diagnostic performance. This approach may provide clinicians with a preoperative decision support tool to optimize treatment strategies for patients with LSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Lebpom采纳,获得10
6秒前
慕青应助LucyMartinez采纳,获得10
9秒前
111完成签到 ,获得积分10
11秒前
正直的爆米花完成签到 ,获得积分10
11秒前
15秒前
jinmuna发布了新的文献求助10
17秒前
18秒前
李甄好应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
含糊的尔槐完成签到,获得积分10
23秒前
28秒前
31秒前
LucyMartinez发布了新的文献求助10
33秒前
33秒前
研友_VZG7GZ应助雪碧要加冰采纳,获得10
34秒前
42秒前
科研通AI6.1应助maopf采纳,获得10
43秒前
雪碧要加冰完成签到,获得积分10
46秒前
51秒前
Abdurrahman完成签到,获得积分10
54秒前
yihuji发布了新的文献求助10
54秒前
BowieHuang应助Sivledy采纳,获得10
59秒前
1分钟前
1分钟前
小林完成签到 ,获得积分10
1分钟前
奋斗的小研完成签到,获得积分10
1分钟前
BowieHuang应助Sivledy采纳,获得10
1分钟前
科研通AI2S应助Sivledy采纳,获得10
1分钟前
freebird完成签到,获得积分10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
luming完成签到 ,获得积分10
1分钟前
Rory完成签到 ,获得积分10
1分钟前
空咻咻发布了新的文献求助10
1分钟前
飘逸芷珍应助小年小少采纳,获得10
1分钟前
盛事不朽完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助Karol采纳,获得10
1分钟前
yihuji完成签到 ,获得积分10
1分钟前
Karol发布了新的文献求助10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746562
求助须知:如何正确求助?哪些是违规求助? 5436195
关于积分的说明 15355651
捐赠科研通 4886597
什么是DOI,文献DOI怎么找? 2627322
邀请新用户注册赠送积分活动 1575805
关于科研通互助平台的介绍 1532538