材料科学
氧化铟锡
光电子学
亮度
铟
电极
散射
图层(电子)
二氧化钛
铜
宽带
电化学
光散射
光学
不透明度
纳米线
氧化物
金属
对比度
干扰(通信)
纳米光子学
钛
锡
电致发光
电化学电池
作者
Nutpaphat Jarulertwathana,Hye-Seung Shin,Eui-Jung Ryu,Kyuwon Lee,In Soo Kim,Cheon Woo Moon,Jerome K. Hyun,Nutpaphat Jarulertwathana,Hye-Seung Shin,Eui-Jung Ryu,Kyuwon Lee,In Soo Kim,Cheon Woo Moon,Jerome K. Hyun
标识
DOI:10.1002/smtd.202501668
摘要
Abstract Despite their low power consumption, commercial black‐and‐white reflective displays based on electrophoretic technology (i.e., electronic paper) suffer from limited brightness, contrast, and temperature tolerance. Here, this study presents an electrochemical display mechanism that addresses these limitations by integrating a light‐scattering layer beneath a roughened indium tin oxide (ITO) electrode supporting reversible metal electrodeposition (RME). The scattering layer is composed of an interwoven titanium dioxide nanowire (TiO 2 NW) network, which provides efficient broadband light scattering to produce a white appearance, while simultaneously ensuring mechanical durability and ion transport. In contrast, a black state is achieved via copper electrodeposition onto the roughened ITO, where the resulting morphology induces strong broadband light absorption. The device exhibits brightness and contrast ratios exceeding those of current commercial e‐readers by more than two‐fold, along with stable switching across a wide temperature range (−5 °C to 55 °C). These results demonstrate a scalable electrochemical nanophotonic platform for next‐generation black‐and‐white reflective displays.
科研通智能强力驱动
Strongly Powered by AbleSci AI