Hydrogel beads for designing future foods: Structures, mechanisms, applications, and challenges

纳米技术 自愈水凝胶 材料科学 食品工业 生化工程 化学 工程类 食品科学 高分子化学
作者
Md Nazmus Saqib,B.M. Khaled,Fei Liu,Fang Zhong
出处
期刊:Food hydrocolloids for health [Elsevier]
卷期号:2: 100073-100073 被引量:59
标识
DOI:10.1016/j.fhfh.2022.100073
摘要

Food colloids are mounting curiosity in the food industry to meet modern demands and challenges. The food hydrocolloids market was valued at approximately USD 9928.5 million in 2021 and expected to increase to approximately USD 13,381.3 million by 2028. Colloidal delivery systems, particularly hydrogel beads, are intensely focused on sustainability, health wellbeing, and sensory perceptions.x Around 23,500 research articles on hydrogel beads have been published in the previous ten years. The successful incorporation of gel beads into the human food system requires an in-depth understanding of beads' production, properties, release, or dissociation mechanisms at different targeted sites. This review has pointed out the latest developments and achievements in hydrogel beads from micro to millimeter-scale in the food industry. Various techniques for systematically producing different kinds of gel beads were also summarized. The fundamental properties and mechanisms of polysaccharides and protein-based materials that can be used for fabricating hydrogel beads are presented with examples. Designing gel beads is a complicated and elusive process where numerous factors must be considered. Apart from gel beads' functional properties, sensory perception is also a fundamental consideration in formulating gel beads for the human food system. The articleended with the potential future prospect of hydrogel beads. Gel beads are still predominantly on a laboratory scale, with a high potential to flourish in the future food system. This will provide a comprehensive idea of the fascinating field of hydrogel beads with up-to-date information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的凡雁完成签到,获得积分10
1秒前
2秒前
望轲完成签到,获得积分10
4秒前
赘婿应助寻梦采纳,获得10
4秒前
徐北游完成签到,获得积分10
6秒前
混子king发布了新的文献求助10
7秒前
可爱寻芹完成签到 ,获得积分10
7秒前
8秒前
9秒前
安玖完成签到,获得积分10
10秒前
小蘑菇应助徐北游采纳,获得10
11秒前
13秒前
困倦南瓜完成签到,获得积分10
13秒前
shzhang发布了新的文献求助10
14秒前
Alice完成签到,获得积分10
16秒前
白小白发布了新的文献求助10
17秒前
17秒前
drtianyunhong完成签到,获得积分10
19秒前
复杂的雪巧完成签到,获得积分10
24秒前
桐桐应助人间无糖冰美式采纳,获得10
26秒前
Owen应助mendicant采纳,获得10
26秒前
朱博完成签到,获得积分10
27秒前
29秒前
XS完成签到,获得积分10
29秒前
30秒前
30秒前
领导范儿应助巧克力采纳,获得10
30秒前
香蕉觅云应助janan33采纳,获得10
31秒前
熙熙发布了新的文献求助30
34秒前
寻梦发布了新的文献求助10
34秒前
夏林发布了新的文献求助10
34秒前
luckygirl完成签到 ,获得积分10
35秒前
大学生完成签到,获得积分10
37秒前
39秒前
39秒前
稳重惜灵发布了新的文献求助10
41秒前
41秒前
41秒前
李冰完成签到,获得积分10
42秒前
43秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907805
求助须知:如何正确求助?哪些是违规求助? 3453665
关于积分的说明 10876413
捐赠科研通 3179681
什么是DOI,文献DOI怎么找? 1756582
邀请新用户注册赠送积分活动 849630
科研通“疑难数据库(出版商)”最低求助积分说明 791667