Anti-Jamming Strategy for Federated Learning in Internet of Medical Things: A Game Approach

计算机科学 斯塔克伯格竞赛 互联网 计算机网络 人工智能 干扰 物理 数学 数理经济学 万维网 热力学
作者
Rukhsana Ruby,Hailiang Yang,Kaishun Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 888-899 被引量:4
标识
DOI:10.1109/jbhi.2022.3183644
摘要

Federated learning (FL) is a new dawn of artificial intelligence (AI), in which machine learning models are constructed in a distributed manner while communicating only model parameters between a centralized aggregator and client internet-of-medical-things (IoMT) nodes. The performance of such a learning technique can be seriously hampered by the activities of a malicious jammer robot. In this paper, we study client selection and channel allocation along with the power control problem of the uplink FL process in IoMT domain under the presence of a jammer from the perspective of long-term learning duration. We map the interaction between the FL network and the jammer in each learning iteration as a Stackelberg game, in which the jammer acts as the leader and the FL network serves as the follower. We consider the client and channel selection as well as the power control jointly as the strategy of this game. Upon formulating the game, we find the joint best response strategy for both types of players by leveraging the difference of convex (DC) programming approach and the dual decomposition technique. Beside the availability of the complete information to both the players, we also study the problem from the perspective that the FL network knows the partial information of the other player. Extensive simulations have been conducted to verify the effectiveness of the proposed algorithms in the jamming game.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小王完成签到,获得积分10
1秒前
兴奋冷松发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
ssy发布了新的文献求助10
3秒前
袋袋发布了新的文献求助10
3秒前
Akim应助soda采纳,获得10
3秒前
3秒前
芝麻配海带完成签到,获得积分10
4秒前
Joseph完成签到,获得积分10
5秒前
carpybala发布了新的文献求助10
5秒前
科研小王发布了新的文献求助10
6秒前
6秒前
SYLH应助lp采纳,获得10
6秒前
6秒前
动漫大师发布了新的文献求助10
6秒前
7秒前
8秒前
Leslie完成签到,获得积分10
8秒前
少时黑羽完成签到 ,获得积分10
8秒前
10秒前
Star1983完成签到,获得积分10
10秒前
10秒前
10秒前
adamchris应助燕子采纳,获得100
11秒前
为学日益发布了新的文献求助10
11秒前
11秒前
carpybala完成签到,获得积分10
11秒前
11秒前
12秒前
我是老大应助若水三千采纳,获得10
12秒前
13秒前
温暖天与完成签到,获得积分10
13秒前
逐风发布了新的文献求助10
13秒前
qq发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786174
求助须知:如何正确求助?哪些是违规求助? 3331826
关于积分的说明 10252362
捐赠科研通 3047109
什么是DOI,文献DOI怎么找? 1672400
邀请新用户注册赠送积分活动 801279
科研通“疑难数据库(出版商)”最低求助积分说明 760137