Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells

硫化铅 量子点 材料科学 退火(玻璃) 光伏 纳米技术 纳米晶 胶体 分散性 纳米颗粒 配体(生物化学) 化学工程 卤化物 光伏系统 无机化学 化学 生态学 生物化学 受体 复合材料 高分子化学 工程类 生物
作者
Xinlu Liu,Ting Fu,Jianping Liu,Yinglin Wang,Yuwen Jia,Chao Wang,Xiaofei Li,Xintong Zhang,Yichun Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (12): 14274-14283 被引量:12
标识
DOI:10.1021/acsami.2c01196
摘要

Colloidal quantum dots (CQDs) have a large specific surface area and a complex surface structure. Their properties in diverse optoelectronic applications are largely determined by their surface chemistry. Therefore, it is essential to investigate the surface chemistry of CQDs for improving device performance. Herein, we realized an efficient surface chemistry optimization of lead sulfide (PbS) CQDs for photovoltaics by annealing the CQD solution with concentrated lead halide ligands after the conventional solution-phase ligand exchange. During the annealing process, the colloidal solution was used to transfer heat and create a secondary reaction environment, promoting the desorption of electrically insulating oleate ligands as well as the trap-related surface groups (Pb-hydroxyl and oxidized Pb species). This was accompanied by the binding of more conductive lead halide ligands on the CQD surface, eventually achieving a more complete ligand exchange. Furthermore, this strategy also minimized CQD polydispersity and decreased aggregation caused by conventional solution-phase ligand exchange, thereby contributing to yielding CQD films with twofold enhanced carrier mobility and twofold reduced trap-state density compared with those of the control. Based on these merits, the fabricated PbS CQD solar cells showed high efficiency of 11% under ambient conditions. Our strategy opens a novel and effective avenue to obtain high-efficiency CQD solar cells with diverse band gaps, providing meaningful guidance for controlling ligand reactivity and realizing subtly purified CQDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaosu发布了新的文献求助30
1秒前
1秒前
HL完成签到,获得积分10
2秒前
小二郎应助小玲仔采纳,获得10
3秒前
图兰发布了新的文献求助10
3秒前
风中的溪流完成签到 ,获得积分10
4秒前
隐形曼青应助wmz采纳,获得10
6秒前
Wang完成签到,获得积分20
6秒前
今后应助宋静宇采纳,获得10
6秒前
汪汪发布了新的文献求助10
8秒前
6w6完成签到 ,获得积分10
8秒前
愤怒的琦发布了新的文献求助30
8秒前
万能图书馆应助芹菜煎蛋采纳,获得10
10秒前
Hao应助eleven采纳,获得10
11秒前
YOHO完成签到 ,获得积分10
11秒前
852应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
11秒前
爆米花应助lxl98采纳,获得10
11秒前
11秒前
11秒前
丘比特应助zzz采纳,获得10
12秒前
菜鸡5号完成签到,获得积分10
13秒前
研友_8QqdO8应助李剑鸿采纳,获得300
16秒前
汪汪完成签到,获得积分10
16秒前
惊蛰发布了新的文献求助10
17秒前
wdink完成签到,获得积分20
17秒前
结实星星应助泰裤辣采纳,获得20
18秒前
phyllis完成签到,获得积分10
19秒前
22秒前
23秒前
23秒前
sumingwong关注了科研通微信公众号
23秒前
爆米花应助Ylang采纳,获得10
25秒前
26秒前
芹菜煎蛋发布了新的文献求助10
27秒前
Ava应助orange采纳,获得10
30秒前
31秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481540
求助须知:如何正确求助?哪些是违规求助? 2144263
关于积分的说明 5468997
捐赠科研通 1866744
什么是DOI,文献DOI怎么找? 927751
版权声明 563039
科研通“疑难数据库(出版商)”最低求助积分说明 496402