A Novel Deep Learning Approach to the Statistical Downscaling of Temperatures for Monitoring Climate Change

缩小尺度 计算机科学 气候变化 环境科学 变压器 人工神经网络 大气环流模式 人工智能 气候学 机器学习 气象学 工程类 地理 地质学 海洋学 电压 电气工程
作者
Firas Gerges,Michel C. Boufadel,Elie Bou‐Zeid,Hani Nassif,Jason T. L. Wang
标识
DOI:10.1145/3523150.3523151
摘要

General Circulation Models (GCMs) allow for the simulation of several climate variables through the year 2100. GCM simulations, however, are too coarse to monitor climate change at a local scale in a local region. Hence, one needs to perform spatial downscaling for these simulations, where statistical downscaling is often used. Statistical downscaling is performed by utilizing the large-scale GCM outputs to forecast a local-scale field (e.g., temperature). In this paper, we develop a new deep learning approach, named AIG-TRANSFORMER, which employs a novel attention-based input grouping (AIG) neural network followed by a transformer, for the statistical downscaling of the weekly averages of maximum (Tmax) and minimum (Tmin) temperatures using GCM-simulated climatic fields (climate variables). We formulate the downscaling problem as a multivariate time series forecasting task, with multiple GCM-simulated climatic fields as input features. We employ an attention mechanism within the AIG network to give selective importance to the input features while reducing the size of the input fed to the transformer. To test AIG-TRANSFORMER, we perform the statistical downscaling over the Hackensack-Passaic Watershed, in northeast New Jersey. We compare our new deep learning approach against several existing machine learning methods including random forests, support vector regression and long short-term memory networks. Experimental results show that AIG-TRANSFORMER outperforms the existing methods for downscaling both the maximum and minimum temperatures, with a Nash–Sutcliffe Efficiency coefficient of 0.84 for Tmax, and 0.85 for Tmin. We further apply AIG-TRANSFORMER to produce long-term projections over the 20 years period from 2030 to 2049, and report the annual means for maximum and minimum temperatures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌剑通发布了新的文献求助10
刚刚
刚刚
张超发布了新的文献求助10
1秒前
1秒前
正方形圆发布了新的文献求助10
2秒前
2秒前
4秒前
NSstupid完成签到,获得积分10
4秒前
科研通AI5应助体贴的青烟采纳,获得10
5秒前
张超完成签到,获得积分10
5秒前
nice1334完成签到,获得积分10
6秒前
7秒前
F7erxl给天真的傲芙的求助进行了留言
8秒前
史蓓蓓发布了新的文献求助10
8秒前
pluto应助舒适路人采纳,获得10
8秒前
张光光发布了新的文献求助10
8秒前
了一李应助不安的秋白采纳,获得10
9秒前
9秒前
9秒前
12秒前
kaikai发布了新的文献求助10
13秒前
LK8669090完成签到,获得积分10
14秒前
咕噜坚果发布了新的文献求助10
15秒前
NexusExplorer应助zorro3574采纳,获得10
15秒前
15秒前
lojack完成签到,获得积分10
15秒前
15秒前
15秒前
zxr发布了新的文献求助10
16秒前
qhcaywy完成签到,获得积分10
18秒前
Dolbar完成签到,获得积分10
19秒前
19秒前
树树发布了新的文献求助10
20秒前
galeno发布了新的文献求助10
21秒前
隐形曼青应助93采纳,获得10
22秒前
22秒前
22秒前
冰魂应助舒适路人采纳,获得10
24秒前
1111发布了新的文献求助10
25秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372