清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning–Enabled Partially Observable Markov Decision Process Framework for Early Sepsis Prediction

部分可观测马尔可夫决策过程 杠杆(统计) 计算机科学 机器学习 马尔可夫决策过程 人工智能 利用 马尔可夫模型 马尔可夫过程 马尔可夫链 统计 数学 计算机安全
作者
Zeyu Liu,Anahita Khojandi,Xueping Li,Akram Mohammed,Robert L. Davis,Rishikesan Kamaleswaran
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2039-2057 被引量:18
标识
DOI:10.1287/ijoc.2022.1176
摘要

Sepsis is a life-threatening condition, caused by the body’s extreme response to an infection. In the United States, 1.7 million cases of sepsis occur annually, resulting in 265,000 deaths. Delayed diagnosis and treatment are associated with higher mortality rates. An exponential rise in the availability of medical data has allowed for the development of sophisticated machine learning algorithms to predict sepsis earlier than the onset. However, these models often underperform, as the training data are retrospective and do not fully capture the uncertain future. In this study, we develop a novel framework, which we refer to as MLePOMDP, to leverage and combine the underlying, high-level knowledge about sepsis progression and machine learning (ML) for classification. Specifically, we use a hidden Markov model to describe sepsis development at a high level, where the ML model makes the higher-order “observations” from temporal data. Consequently, a partially observable Markov decision process (POMDP) model is developed to make classification decisions. We analytically establish that the optimal policy is of threshold-type, which we exploit to efficiently optimize MLePOMDP. MLePOMDP is calibrated and tested using high-frequency physiological data collected from bedside monitors. Different from past POMDP-based frameworks, MLePOMDP is developed for a prediction task using a very small state definition, produces highly interpretable results, and accounts for a novel and clinically meaningful action space. Our results show that MLePOMDP outperforms machine learning–based benchmarks by up to 8% in precision. Importantly, MLePOMDP is able to reduce false alarms by up to 28%. An additional experiment is conducted to show the generalizability of MLePOMDP to different patient cohorts. Summary of Contribution: This study develops a novel real-time decision support framework for early sepsis prediction by integrating well-known machine learning models (random forest and neural networks) with a well-established sequential decision-making model, namely, a partially observable Markov decision process (POMDP). The structural properties of the optimal policy are further explored and a threshold-type structure is established, which is then leveraged to develop a customized algorithm to solve the problem more efficiently. The resulting framework demonstrates the benefit of applying POMDPs to augment machine learning outputs. Specifically, the framework results in the reduction of false alarms in sepsis predictions where decisions are made in real time, hence improving the overall prediction precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫莫完成签到 ,获得积分10
5秒前
Kyrie完成签到,获得积分10
5秒前
研友_8WOBM8发布了新的文献求助10
45秒前
1分钟前
冷傲半邪完成签到,获得积分10
1分钟前
yyds给yyds的求助进行了留言
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
如歌完成签到,获得积分10
1分钟前
1分钟前
烂漫的绿茶完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
yyds发布了新的文献求助30
2分钟前
量子星尘发布了新的文献求助10
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
芳菲依旧应助紫熊采纳,获得30
4分钟前
4分钟前
haifenghou应助紫熊采纳,获得20
4分钟前
4分钟前
香蕉诗蕊应助紫熊采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
NattyPoe应助limy采纳,获得10
6分钟前
雪飞杨完成签到 ,获得积分10
7分钟前
juliar完成签到 ,获得积分10
7分钟前
zhangsan完成签到,获得积分10
7分钟前
从容芮完成签到,获得积分0
8分钟前
田乐天完成签到 ,获得积分10
8分钟前
顾矜应助左右采纳,获得10
8分钟前
8分钟前
gwbk完成签到,获得积分10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
搞怪惜儿完成签到 ,获得积分10
9分钟前
GAW完成签到,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
常有李完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658210
求助须知:如何正确求助?哪些是违规求助? 4818532
关于积分的说明 15081001
捐赠科研通 4816679
什么是DOI,文献DOI怎么找? 2577518
邀请新用户注册赠送积分活动 1532445
关于科研通互助平台的介绍 1491078