亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials

偶氮苯 微型多孔材料 材料科学 多孔性 纳米技术 多孔介质 吸附 化学工程 分子 聚合物 化学 有机化学 复合材料 工程类
作者
Hannah F. Drake,Gregory S. Day,Zhifeng Xiao,Hong‐Cai Zhou,Matthew R. Ryder
出处
期刊:Trends in chemistry [Elsevier]
卷期号:4 (1): 32-47 被引量:28
标识
DOI:10.1016/j.trechm.2021.11.003
摘要

Porous materials for gas storage and separations have had limited success in reaching working capacity goals because of fundamental limitations in how the gas is adsorbed within the microporous structures. Light-induced photoirradiation has distinct advantages over many other stimulus approaches, including being non-destructive, having high spatial and periodic resolution, and generating a more accurate and predictable response over the desired pressure range. The main strategies for light-induced switchable adsorption (LISA) are through the incorporation of photoresponsive molecules as guests (type 1), pendant groups (type 2), and backbones (type 3). Despite the relative infancy of the application of LISA to targeted gas storage and separations, preliminary research has shown promising advances, and we expect a diverse array of discoveries to be forthcoming in the next few years. Despite the long history of porous materials as adsorbates, fundamental limitations remain regarding the efficient capture and release of the gas molecules, with the working capacity of the material often overlooked. In microporous materials, the uptake is dominated by low-pressure adsorption, with much of this being at pressures below the minimum working threshold for many gas utilization processes. Thus, research has focused on several advances in porous materials, including photoresponsive organic units for light-induced switchable adsorption. This process utilizes light to trigger structural or electronic changes, alter the gas uptake, and change the working capacity. While a relatively recent development, there is a significant body of research regarding the use of light to control gas storage performance. Despite the long history of porous materials as adsorbates, fundamental limitations remain regarding the efficient capture and release of the gas molecules, with the working capacity of the material often overlooked. In microporous materials, the uptake is dominated by low-pressure adsorption, with much of this being at pressures below the minimum working threshold for many gas utilization processes. Thus, research has focused on several advances in porous materials, including photoresponsive organic units for light-induced switchable adsorption. This process utilizes light to trigger structural or electronic changes, alter the gas uptake, and change the working capacity. While a relatively recent development, there is a significant body of research regarding the use of light to control gas storage performance. two phenyl rings joined by two nitrogen atoms in an N–N double bond. The phenyl rings can also be functionalized with other functional groups. crystalline porous materials synthesized through covalent bonding of organic monomers, sometimes referred to as crystalline PPNs. electronic energy transfer from a ligand to a metal. a light-induced response that can result in switchable gas adsorption properties of a material. The reaction is often immediately reversible with the presence or absence of a photo trigger. a light-induced switchable catalytic state. crystalline porous materials comprising organic and inorganic components synthesized from ionic or coordination bonds. electronic energy transfer from a metal center to a ligand. also called MOPs; highly ordered porous materials maintaining their pore structures in solution. They are made from metal clusters and organic linkers like MOFs but are typically single pore units in size. thin films of porous materials constructed from polymers. These can have multiple phases or layers and can be made into composite materials with PCCs/MOPs, MOFs, or PPNs. also called POPs; non-crystalline porous materials synthesized from organic building blocks into a polymer matrix. two phenyl rings joined by two carbon atoms in a bridging C–C double bond. Also called the carbon analog of azobenzene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
21145077发布了新的文献求助10
2秒前
4秒前
5秒前
babao发布了新的文献求助30
7秒前
无题完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助青柠采纳,获得10
14秒前
babao完成签到,获得积分20
16秒前
Mmmmmmm发布了新的文献求助30
16秒前
19秒前
25秒前
DD完成签到 ,获得积分10
28秒前
34秒前
37秒前
我是老大应助李桂芳采纳,获得10
38秒前
浮浮世世应助科研通管家采纳,获得30
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
英俊的铭应助科研通管家采纳,获得20
40秒前
浮游应助科研通管家采纳,获得10
40秒前
彭于晏应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
小二郎应助科研通管家采纳,获得10
40秒前
41秒前
压缩完成签到 ,获得积分10
48秒前
48秒前
49秒前
李健的小迷弟应助豆都采纳,获得10
49秒前
51秒前
1分钟前
小张完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
啵啵完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
青柠完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490