Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation

计算机视觉 人工智能 刀具磨损 帧(网络) 旋转(数学) 计算机科学 机械加工 机器视觉 机床 直方图 停工期 工程类 图像(数学) 机械工程 电信 操作系统
作者
Zhichao You,Hongli Gao,Liang Guo,Yuekai Liu,Jingbo Li,Changgen Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:171: 108904-108904 被引量:42
标识
DOI:10.1016/j.ymssp.2022.108904
摘要

Tool condition monitoring (TCM) is an important guarantee for quality evaluation of products and parameter optimization of machining operations. The direct methods of TCM have made significant progress in condition recognition and wear measurement. However, these methods based on a single image that reflects the tool condition inevitably bring downtime to the machine tool. Moreover, a single image cannot reflect the tool wear characteristics integrity because the morphology of tool wear is complex. Regarding the issue above, the aim of this paper was to adaptively online monitoring for milling cutters. Firstly, tool condition image sequence (TCIS) is proposed in successive images to express and enhance tool wear characteristics from multiple angles. Secondly, the time-sequential gradient map between adjacent images is constructed based on histograms of oriented gradient. It is used to capture the initial frame of TCIS. Then, the subsequent images are encoded into the classification model. A logistic regression algorithm is applied to train the classification model to capture the end frame of TCIS. Finally, the tool wear area is located by balancing the rectangular box of wear area and benchmarks of wear measurement and is tracked based on the motion model and the local search. In the experiment of accelerating milling cutter life and three different failure phenomena, the recognition accuracy in the initial and end frame of TCIS is 100%. The average measurement accuracy of flank wear based on the proposed method in two experiments is up to 97.02% and 94.71%, respectively. These operations are automated online and provide complete data support for TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴鹰发布了新的文献求助10
2秒前
小豪号发布了新的文献求助10
3秒前
慕青应助行走的土豆采纳,获得10
3秒前
kilig_r发布了新的文献求助10
4秒前
zhaopenghui发布了新的文献求助10
5秒前
SLJD完成签到,获得积分10
5秒前
5秒前
阿翼发布了新的文献求助10
5秒前
寒冷的夜梦完成签到,获得积分20
5秒前
6秒前
Valerie发布了新的文献求助10
6秒前
少年啊完成签到,获得积分10
6秒前
酷波er应助小米采纳,获得10
6秒前
赶紧毕业完成签到,获得积分10
6秒前
7秒前
7秒前
WN发布了新的文献求助10
9秒前
Nix完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
五五完成签到 ,获得积分10
11秒前
11秒前
无花果应助体贴鹰采纳,获得10
12秒前
芝士铁板鸡完成签到,获得积分20
12秒前
开放的绮晴完成签到,获得积分20
12秒前
Changlu完成签到,获得积分20
13秒前
13秒前
灯哥完成签到,获得积分10
13秒前
13秒前
许七安发布了新的文献求助10
14秒前
菜叶子发布了新的文献求助10
14秒前
深情安青应助XudongHou采纳,获得10
14秒前
YuxingWang发布了新的文献求助10
15秒前
xy发布了新的文献求助10
15秒前
guoguo完成签到,获得积分10
16秒前
纯真若男完成签到,获得积分10
16秒前
NexusExplorer应助xieben采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490624
求助须知:如何正确求助?哪些是违规求助? 4589068
关于积分的说明 14423619
捐赠科研通 4521153
什么是DOI,文献DOI怎么找? 2477182
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329