Kriging–KNN Hybrid Analysis Method for Structural Reliability Analysis

克里金 可靠性(半导体) 算法 代理(统计) 数据挖掘 计算机科学 数学优化 数学 机器学习 量子力学 物理 功率(物理)
作者
Pengzhen Lu,Tao Hong,Ying Wu,Zijie Xu,Dengguo Li,Yiheng Ma,Limin Shao
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:27 (4) 被引量:4
标识
DOI:10.1061/(asce)be.1943-5592.0001837
摘要

When the conventional response surface method is used to solve the reliability problem in complex structures, the response surface fitting accuracy is low, and the reliability accuracy does not satisfy the requirements of the design specifications owing to the complex structure and highly nonlinear implicit functional function. Therefore, the kriging proxy model is used to construct the response surface of the implicit functional function. In addition, the kriging proxy model is combined with the k-nearest neighbor (KNN) algorithm. By improving the optimization efficiency of the model parameters, the constructed implicit function can be used to simulate the structural limit state function. Therefore, kriging–KNN hybrid analysis to calculate structure failure probability will be proposed. A numerical example will be provided to demonstrate the effectiveness of the proposed method. The results show that the proposed method utilized the kriging proxy model to construct a response surface with high fitting accuracy that used a few samples. In addition, the KNN will be used to address the inadequate accuracy and efficiency of the kriging agent model for classification; therefore, effectively improving the accuracy and efficiency of the structure reliability calculation. Compared with the traditional response surface method, the kriging–KNN hybrid analysis method reduced the error rate and improved the prediction accuracy and calculation efficiency significantly. Furthermore, the model could be easily combined with the existing general finite-element analysis software to analyze the reliability of complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南北发布了新的文献求助10
刚刚
Orange应助饵丝拌辣酱采纳,获得10
刚刚
阿灵发布了新的文献求助10
1秒前
jssssssss发布了新的文献求助10
1秒前
zxd完成签到,获得积分10
1秒前
科研通AI2S应助卢敏明采纳,获得10
1秒前
2秒前
2秒前
王聪颖发布了新的文献求助10
5秒前
要减肥的不凡完成签到,获得积分10
5秒前
5秒前
研友_8QxN1Z完成签到,获得积分10
5秒前
善良的咖啡完成签到,获得积分10
6秒前
汉堡包应助饵丝拌辣酱采纳,获得10
6秒前
7秒前
宛海完成签到 ,获得积分10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
菜菜菜发布了新的文献求助10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
失眠醉易应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819042
求助须知:如何正确求助?哪些是违规求助? 3362124
关于积分的说明 10415640
捐赠科研通 3080439
什么是DOI,文献DOI怎么找? 1694471
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768382