A Novel Convolutional Neural Network for the Diagnosis and Classification of Rosacea: Usability Study (Preprint)

酒渣鼻 皮肤病科 医学 痤疮 卷积神经网络 红斑 银屑病 人工智能 计算机科学
作者
Zhixiang Zhao,Che‐Ming Wu,Shuping Zhang,Fanping He,Fangfen Liu,Ben Wang,Yingxue Huang,Wei Shi,Dan Jian,Hongfu Xie,Chao‐Yuan Yeh,Ji Li
标识
DOI:10.2196/preprints.23415
摘要

BACKGROUND Rosacea is a chronic inflammatory disease with variable clinical presentations, including transient flushing, fixed erythema, papules, pustules, and phymatous changes on the central face. Owing to the diversity in the clinical manifestations of rosacea, the lack of objective biochemical examinations, and nonspecificity in histopathological findings, accurate identification of rosacea is a big challenge. Artificial intelligence has emerged as a potential tool in the identification and evaluation of some skin diseases such as melanoma, basal cell carcinoma, and psoriasis. OBJECTIVE The objective of our study was to utilize a convolutional neural network (CNN) to differentiate the clinical photos of patients with rosacea (taken from 3 different angles) from those of patients with other skin diseases such as acne, seborrheic dermatitis, and eczema that could be easily confused with rosacea. METHODS In this study, 24,736 photos comprising of 18,647 photos of patients with rosacea and 6089 photos of patients with other skin diseases such as acne, facial seborrheic dermatitis, and eczema were included and analyzed by our CNN model based on ResNet-50. RESULTS The CNN in our study achieved an overall accuracy and precision of 0.914 and 0.898, with an area under the receiver operating characteristic curve of 0.972 for the detection of rosacea. The accuracy of classifying 3 subtypes of rosacea, that is, erythematotelangiectatic rosacea, papulopustular rosacea, and phymatous rosacea was 83.9%, 74.3%, and 80.0%, respectively. Moreover, the accuracy and precision of our CNN to distinguish rosacea from acne reached 0.931 and 0.893, respectively. For the differentiation between rosacea, seborrheic dermatitis, and eczema, the overall accuracy of our CNN was 0.757 and the precision was 0.667. Finally, by comparing the CNN diagnosis with the diagnoses by dermatologists of different expertise levels, we found that our CNN system is capable of identifying rosacea with a performance superior to that of resident doctors or attending physicians and comparable to that of experienced dermatologists. CONCLUSIONS The findings of our study showed that by assessing clinical images, the CNN system in our study could identify rosacea with accuracy and precision comparable to that of an experienced dermatologist.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
全文发布了新的文献求助10
刚刚
陈洋_复旦大学完成签到,获得积分10
1秒前
王鑫发布了新的文献求助30
1秒前
1秒前
南淮完成签到,获得积分10
2秒前
张大然发布了新的文献求助10
6秒前
lulu发布了新的文献求助10
6秒前
雨兔儿完成签到,获得积分10
6秒前
7秒前
7秒前
cm完成签到 ,获得积分20
8秒前
阿达发布了新的文献求助10
8秒前
NL完成签到,获得积分10
9秒前
善学以致用应助全文采纳,获得10
10秒前
XXXX完成签到,获得积分10
11秒前
烟花应助YZ采纳,获得10
11秒前
hzk发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
yy发布了新的文献求助10
14秒前
英俊的铭应助XXXX采纳,获得10
15秒前
隐形晓夏发布了新的文献求助10
15秒前
忧虑的靖巧完成签到 ,获得积分10
17秒前
充电宝应助默默的水壶采纳,获得10
17秒前
慕青应助王博士采纳,获得10
17秒前
张张孟孟发布了新的文献求助10
18秒前
19秒前
zsl完成签到 ,获得积分10
22秒前
lulu完成签到,获得积分10
22秒前
Lucas应助hzk采纳,获得10
23秒前
26秒前
青青子衿完成签到,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得20
27秒前
zero桥发布了新的文献求助50
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110648
求助须知:如何正确求助?哪些是违规求助? 3649082
关于积分的说明 11557916
捐赠科研通 3354287
什么是DOI,文献DOI怎么找? 1842864
邀请新用户注册赠送积分活动 909053
科研通“疑难数据库(出版商)”最低求助积分说明 825917