海森堡极限
计量学
叠加原理
量子计量学
物理
量子
实现(概率)
量子力学
极限(数学)
量子极限
不确定性原理
量化(信号处理)
数学
数学分析
量子信息
量子计算机
算法
统计
量子模拟器
量子网络
作者
Peng Yin,Xiaobin Zhao,Yuxiang Yang,Yu Guo,Wen-Hao Zhang,Gongchu Li,Yong‐Jian Han,Bi‐Heng Liu,Jin‐Shi Xu,Giulio Chiribella,Geng Chen,Chuan‐Feng Li,Guang‐Can Guo
出处
期刊:Research Square - Research Square
日期:2022-02-23
被引量:3
标识
DOI:10.21203/rs.3.rs-1327792/v1
摘要
Abstract The Heisenberg limit, corresponding to a root mean square error vanishing as 1/N with the number N of independent processes probed in an experiment, is widely believed to be an ultimate limit to the precision of quantum metrology.In this work, we experimentally demonstrate a quantum metrology protocol surpassing Heisenberg limit by implementing indefinite (a superposition of) orders of two groups of independent processes. Each process creates a phase space displacement, and the precision to estimate the geometric phase introduced by a total number of 2N processes approaches the super-Heisenberg limit of 1/N 2 . In our setup, the polarization of a single photon coherently controls the order of displacements on the transverse modes of the radiation field, resulting into indefinite order and allowing us to outperform every setup where the displacements are probed in a definite order. Our experiment features a realization of coherent control over the order in a continuous-variable system, and can be applied to the measurement of various important parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI