已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new parametric 3D human body modeling approach by using key position labeling and body parts segmentation

体型 人体 分割 计算机科学 参数统计 人工智能 人体模型 钥匙(锁) 参数化模型 计算机视觉 职位(财务) 模式识别(心理学) 数学 统计 计算机安全 财务 经济
作者
Cheng Chi,Xiaoyang Zeng,Pascal Bruniaux,Guillaume Tartare,Hongshu Jin
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:92 (19-20): 3653-3679 被引量:4
标识
DOI:10.1177/00405175221089688
摘要

The current three-dimensional human models used in the apparel industry are mostly rigid and lack semantic information on body positions and body parts. Therefore, it is difficult for designers to make accurate, fast and effective designs from these models. This paper proposes a new parametric three-dimensional human body model based on key position labeling and optimized body parts segmentation. First, by using experts’ professional knowledge, we manually realize accurate human body data measurements as well as their interpretation and classification, and extract relevant human body features. After deep analysis, measured data irrelevant to body shape have been excluded by designers. Furthermore, the relation between body shapes and body features have been modeled. Second, based on this relational model, we label key positions on the corresponding three-dimensional body model obtained by scanning and segmenting the whole three-dimensional human body into semantically interpretable body parts. In this way, two databases have been created, enabling us to identify features of all segmented body parts, whose combination corresponds to the whole body shape. Third, for a specific consumer, his/her personalized three-dimensional human model can be obtained by taking a very few number of body measurements on himself/herself, making an appropriate combination of the identified body parts, and adjusting parameters of all involved body parts. By comparing the proposed labeled and segmented three-dimensional human model and the existing human models through a number of experiments, the proposed model leads to more relevant results with high accuracy and high visual quality related to real human body shapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
安年发布了新的文献求助10
2秒前
4秒前
4秒前
ntxiaohu发布了新的文献求助10
5秒前
6秒前
7秒前
沉静的曼荷完成签到,获得积分10
8秒前
12344555发布了新的文献求助10
8秒前
研友_VZG7GZ应助安年采纳,获得10
9秒前
9秒前
10秒前
清新的梦桃完成签到,获得积分10
12秒前
wise111发布了新的文献求助10
12秒前
852应助小星采纳,获得10
12秒前
木子完成签到 ,获得积分10
13秒前
浮游应助沉静的曼荷采纳,获得10
13秒前
NexusExplorer应助沉静的曼荷采纳,获得10
13秒前
顺利的雁梅完成签到 ,获得积分10
13秒前
哈哈发布了新的文献求助10
15秒前
12344555完成签到,获得积分10
17秒前
落后乘风完成签到 ,获得积分10
18秒前
孙燕应助月光采纳,获得50
18秒前
19秒前
20秒前
iron完成签到,获得积分10
24秒前
SciGPT应助zyq采纳,获得10
24秒前
yangquanquan发布了新的文献求助10
25秒前
ky幻影完成签到,获得积分10
26秒前
凌香芦完成签到 ,获得积分10
26秒前
InaZheng发布了新的文献求助10
27秒前
30秒前
哈哈完成签到,获得积分10
30秒前
31秒前
坦率灵煌完成签到,获得积分10
31秒前
李健的小迷弟应助dzjin采纳,获得30
32秒前
wise111发布了新的文献求助10
33秒前
yangquanquan完成签到,获得积分10
33秒前
8R60d8应助姜太公采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290304
求助须知:如何正确求助?哪些是违规求助? 4441692
关于积分的说明 13827995
捐赠科研通 4324297
什么是DOI,文献DOI怎么找? 2373618
邀请新用户注册赠送积分活动 1368975
关于科研通互助平台的介绍 1332950