Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma

列线图 医学 深度学习 危险系数 肿瘤科 人工智能 鼻咽癌 内科学 放射治疗 放射科 置信区间 计算机科学
作者
Xun Zhao,Yu-Jing Liang,Xu Zhang,Dong‐Xiang Wen,Wei Fan,Lin‐Quan Tang,Di Dong,Jie Tian,Hai‐Qiang Mai
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (8): 2972-2982 被引量:28
标识
DOI:10.1007/s00259-022-05793-x
摘要

How to discriminate different risks of recurrent nasopharyngeal carcinoma (rNPC) patients and guide individual treatment has become of great importance. This study aimed to explore the associations between deep learning signatures and biological functions as well as survival in (rNPC) patients.A total of 420 rNPC patients with PET/CT imaging and follow-up of overall survival (OS) were retrospectively enrolled. All patients were randomly divided into a training set (n = 269) and test set (n = 151) with a 6:4 ratio. We constructed multi-modality deep learning signatures from PET and CT images with a light-weighted deep convolutional neural network EfficienetNet-lite0 and survival loss DeepSurvLoss. An integrated nomogram was constructed incorporating clinical factors and deep learning signatures from PET/CT. Clinical nomogram and single-modality deep learning nomograms were also built for comparison. Furthermore, the association between biological functions and survival risks generated from an integrated nomogram was analyzed by RNA sequencing (RNA-seq).The C-index of the integrated nomogram incorporating age, rT-stage, and deep learning PET/CT signature was 0.741 (95% CI: 0.688-0.794) in the training set and 0.732 (95% CI: 0.679-0.785) in the test set. The nomogram stratified patients into two groups with high risk and low risk in both the training set and test set with hazard ratios (HR) of 4.56 (95% CI: 2.80-7.42, p < 0.001) and 4.05 (95% CI: 2.21-7.43, p < 0.001), respectively. The C-index of the integrated nomogram was significantly higher than the clinical nomogram and single-modality nomograms. When stratified by sex, N-stage, or EBV DNA, risk prediction of our integrated nomogram was valid in all patient subgroups. Further subgroup analysis showed that patients with a low-risk could benefit from surgery and re-irradiation, while there was no difference in survival rates between patients treated by chemotherapy in the high-risk and low-risk groups. RNA sequencing (RNA-seq) of data further explored the mechanism of high- and low-risk patients from the genetic and molecular level.Our study demonstrated that PET/CT-based deep learning signatures showed satisfactory prognostic predictive performance in rNPC patients. The nomogram incorporating deep learning signatures successfully divided patients into different risks and had great potential to guide individual treatment: patients with a low-risk were supposed to be treated with surgery and re-irradiation, while for high-risk patients, the application of palliative chemotherapy may be sufficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地塞米松完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
汪汪发布了新的文献求助10
2秒前
3秒前
晶格畸变完成签到,获得积分10
3秒前
大大彬完成签到 ,获得积分10
4秒前
4秒前
所所应助结实的半双采纳,获得10
4秒前
花痴的小松鼠完成签到 ,获得积分10
5秒前
5秒前
6秒前
Jankin完成签到 ,获得积分10
6秒前
6秒前
heyudian发布了新的文献求助20
7秒前
7秒前
8秒前
wang发布了新的文献求助10
8秒前
wongtx发布了新的文献求助10
9秒前
希望天下0贩的0应助汪汪采纳,获得10
9秒前
10秒前
11秒前
11秒前
Ava应助糟糕的尔云采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
今后应助飞快的夜天采纳,获得10
12秒前
活力小夏发布了新的文献求助80
13秒前
13秒前
小熊发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
英姑应助Yuanfang123采纳,获得10
18秒前
20秒前
Moxley发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
24秒前
英姑应助wongtx采纳,获得10
24秒前
25秒前
情怀应助Nathan采纳,获得10
25秒前
miaomiao发布了新的文献求助10
25秒前
Robin完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4677127
求助须知:如何正确求助?哪些是违规求助? 4054677
关于积分的说明 12538046
捐赠科研通 3748783
什么是DOI,文献DOI怎么找? 2070651
邀请新用户注册赠送积分活动 1099681
科研通“疑难数据库(出版商)”最低求助积分说明 979311