An ECG Signal Denoising Method Using Conditional Generative Adversarial Net

鉴别器 降噪 计算机科学 模式识别(心理学) 人工智能 噪音(视频) 卷积(计算机科学) 信号(编程语言) 固定点算法 卷积神经网络 深度学习 信噪比(成像) 一般化 语音识别 数学 人工神经网络 频道(广播) 图像(数学) 盲信号分离 电信 程序设计语言 探测器 计算机网络 数学分析
作者
Xiaoyu Wang,Bingchu Chen,Ming Zeng,Yuli Wang,Hui Liu,Ruixia Liu,Tian Lan,LU Xiao-shan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 2929-2940 被引量:49
标识
DOI:10.1109/jbhi.2022.3169325
摘要

In this paper, a novel denoising method for electrocardiogram (ECG) signal is proposed to improve performance and availability under multiple noise cases. The method is based on the framework of conditional generative adversarial network (CGAN), and we improved the CGAN framework for ECG denoising. The proposed framework consists of two networks: a generator that is composed of the optimized convolutional auto-encoder (CAE) and a discriminator that is composed of four convolution layers and one full connection layer. As the convolutional layers of CAE can preserve spatial locality and the neighborhood relations in the latent higher-level feature representations of ECG signal, and the skip connection facilitates the gradient propagation in the denoising training process, the trained denoising model has good performance and generalization ability. The extensive experimental results on MIT-BIH databases show that for single noise and mixed noises, the average signal-to-noise ratio (SNR) of denoised ECG signal is above 39 dB, and it is better than that of the state-of-the-art methods. Furthermore, the denoised classification results of four cardiac diseases show that the average accuracy increased above 32 $\%$ under multiple noises under SNR=0 dB. So, the proposed method can remove noise effectively as well as keep the details of the features of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
456关注了科研通微信公众号
刚刚
小郝发布了新的文献求助10
刚刚
科研通AI2S应助杏杏采纳,获得10
刚刚
小沐完成签到,获得积分10
刚刚
春K发布了新的文献求助10
刚刚
1秒前
我没钱发布了新的文献求助10
1秒前
3秒前
苏雅完成签到,获得积分10
3秒前
3秒前
何h完成签到,获得积分10
5秒前
Dr_guo完成签到,获得积分10
5秒前
LzG完成签到,获得积分10
5秒前
咪咪大王完成签到,获得积分10
5秒前
6秒前
tranphucthinh发布了新的文献求助10
6秒前
王小Q完成签到,获得积分10
7秒前
eagle发布了新的文献求助10
8秒前
ashdj完成签到,获得积分10
9秒前
9秒前
10秒前
靳欣妍完成签到 ,获得积分10
10秒前
科研通AI6应助小郝采纳,获得10
10秒前
12秒前
12秒前
fj完成签到,获得积分10
13秒前
null应助lezbj99采纳,获得10
13秒前
14秒前
xxx发布了新的文献求助10
14秒前
14秒前
15秒前
Angie发布了新的文献求助10
15秒前
15秒前
16秒前
欢欢完成签到,获得积分20
16秒前
美味猫堡发布了新的文献求助10
18秒前
拂晓发布了新的文献求助20
18秒前
minisword完成签到,获得积分10
19秒前
JAJ驳回了wanci应助
19秒前
zhengjianlong完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549536
求助须知:如何正确求助?哪些是违规求助? 3979940
关于积分的说明 12322081
捐赠科研通 3648815
什么是DOI,文献DOI怎么找? 2009522
邀请新用户注册赠送积分活动 1044920
科研通“疑难数据库(出版商)”最低求助积分说明 933436