Explainable artificial intelligence in skin cancer recognition: A systematic review

斯科普斯 计算机科学 分类器(UML) 皮肤癌 人工智能 皮肤病科 医学 癌症 梅德林 政治学 内科学 法学
作者
Katja Hauser,Alexander Kurz,Sarah Haggenmüller,Roman C. Maron,Christof von Kalle,Jochen Utikal,Friedegund Meier,Sarah Hobelsberger,Frank Friedrich Gellrich,Mildred Sergon,Axel Hauschild,Lars E. French,Lucie Heinzerling,Justin Gabriel Schlager,Kamran Ghoreschi,Max Schlaak,Franz J. Hilke,Gabriela Poch,Heinz Kutzner,Carola Berking
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:167: 54-69 被引量:112
标识
DOI:10.1016/j.ejca.2022.02.025
摘要

BackgroundDue to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem.We investigate how XAI is used for skin cancer detection: how is it used during the development of new DNNs? What kinds of visualisations are commonly used? Are there systematic evaluations of XAI with dermatologists or dermatopathologists?MethodsGoogle Scholar, PubMed, IEEE Explore, Science Direct and Scopus were searched for peer-reviewed studies published between January 2017 and October 2021 applying XAI to dermatological images: the search terms histopathological image, whole-slide image, clinical image, dermoscopic image, skin, dermatology, explainable, interpretable and XAI were used in various combinations. Only studies concerned with skin cancer were included.Results37 publications fulfilled our inclusion criteria. Most studies (19/37) simply applied existing XAI methods to their classifier to interpret its decision-making. Some studies (4/37) proposed new XAI methods or improved upon existing techniques. 14/37 studies addressed specific questions such as bias detection and impact of XAI on man-machine-interactions. However, only three of them evaluated the performance and confidence of humans using CAD systems with XAI.ConclusionXAI is commonly applied during the development of DNNs for skin cancer detection. However, a systematic and rigorous evaluation of its usefulness in this scenario is lacking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的映之完成签到 ,获得积分10
1秒前
宇宙飞船2436完成签到,获得积分10
2秒前
轻歌水越完成签到 ,获得积分10
2秒前
3秒前
sunshine完成签到,获得积分10
3秒前
3秒前
4秒前
徐丢丢完成签到 ,获得积分10
4秒前
mkl发布了新的文献求助10
6秒前
KL应助研友_ngXbVZ采纳,获得10
6秒前
affff完成签到 ,获得积分10
8秒前
甘sir完成签到 ,获得积分10
8秒前
xiaobin发布了新的文献求助10
8秒前
平淡的雁开完成签到,获得积分10
9秒前
poly完成签到,获得积分10
10秒前
梁伟鑫完成签到 ,获得积分10
11秒前
结实凌瑶完成签到 ,获得积分10
11秒前
Sodagreen2023完成签到,获得积分10
14秒前
Vicky完成签到 ,获得积分10
16秒前
mkl完成签到,获得积分10
17秒前
打打应助nqterysc采纳,获得10
19秒前
余生完成签到 ,获得积分10
21秒前
YZ完成签到 ,获得积分10
21秒前
Man_proposes完成签到,获得积分10
23秒前
magic_sweets完成签到,获得积分10
23秒前
丽莉完成签到,获得积分20
23秒前
LLL完成签到,获得积分10
25秒前
Freelover完成签到,获得积分10
25秒前
26秒前
huco完成签到,获得积分10
26秒前
Cc完成签到 ,获得积分10
27秒前
丽莉发布了新的文献求助10
31秒前
WENS完成签到,获得积分10
31秒前
Cumin完成签到 ,获得积分10
31秒前
56360完成签到,获得积分10
32秒前
甜甜的满天完成签到,获得积分10
36秒前
byby完成签到,获得积分10
38秒前
不能吃太饱完成签到 ,获得积分10
38秒前
zzwwill完成签到,获得积分10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754520
求助须知:如何正确求助?哪些是违规求助? 4098319
关于积分的说明 12679308
捐赠科研通 3812048
什么是DOI,文献DOI怎么找? 2104436
邀请新用户注册赠送积分活动 1129642
关于科研通互助平台的介绍 1007335