The Scanning Vibrating Electrode Technique for the Study of Hydrogen Evolution from Iron Electrodes

电极 材料科学 电解质 腐蚀 钝化 电化学 纳米技术 冶金 光电子学 化学 物理化学 图层(电子)
作者
Carol Frances Glover,Ian Mabbett,Raman Subramanian,Alistair Barnes,G. Williams
出处
期刊:Meeting abstracts 卷期号:MA2014-02 (2): 146-146
标识
DOI:10.1149/ma2014-02/2/146
摘要

Key drivers for rechargeable battery technologies, that are compatible with photovoltaics (PV) and practical for residential applications, are long cycle-life and safety. As such, ‘eco-friendly’ nickel-iron (NiFe) batteries have been highlighted as a potential contender for incorporation in large-scale electrical energy storage. Typical manufacturer data suggests a cycle life of well over the reported 5,000 cycles required to fulfill the needs for intermittent resources [1]. However, the overall performance of iron-based electrodes is limited by poor charging efficiency due to hydrogen evolution, and poor discharge rate capability due to passivation by electrically non-conductive iron (II) hydroxide [2]. Typical charging efficiencies of no more than 60% are reported; this compares poorly with alternative Li-ion and lead-acid technologies where efficiencies of 75% and 95% are quoted respectively [3]. An in situ scanning vibrating electrode technique (SVET) has been used extensively in the corrosion field [4-5]. The technique can be used to scan an area of exposed metal immersed in electrolyte and measure the area-averaged current densities, and mass lost, over a desirable time period. The size and location of corrosion activity can be determined from a current density surface map produced for each scan. Previously, SVET has been used to measure the amount of H 2 evolved from corroding magnesium substrates [5]. In the present work a three-electrode electrochemical cell, with a platinum gauze counter electrode and a mercury/mercury oxide (MMO) reference electrode, is employed. Iron samples are potentiostatically polarised to a value of -1.3 V vs. MMO in a solution of potassium hydroxide (30% w/v%). The principal aim is to compare the volume of H 2 evolved when measured using both SVET and a volumetric measurement technique [6] - preliminary experiments show a good correlation. For SVET experiments, the volume of H 2 evolved is calculated by determining area-averaged cathodic current density (J ct ) by numerical integration, using the trapezium rule, of the time-dependent total current density (j z ) distribution produced for each scan. The total equivalent quantity of H 2 evolved at the exposed iron surface in each scan is then calculated by applying the cathodic current density data to Faraday’s Law. An improved charging efficiency to 96% by the incorporation of high purity carbonyl iron electrodes has been reported [2]. Additives such as bismuth sulfide have been shown to suppress the H 2 evolution reaction. A further aim of the current study is to use the SVET to measure the H 2 evolution on iron samples through a range of purities. In a separate experiment, additions of bismuth sulfide are made to the electrolyte at varying concentrations to determine the effect on H 2 evolution. The current work aims to validate in situ SVET as a tool for the study of electrodes. In doing so there will be great scope for quantifying levels of H 2 evolution and for determining any surface discontinuities, via the study of current density distributions given by the surface maps. This will facilitate the investigation of electrodes manufactured on site in the future. References [1] Y.V. Makarov, B. Yang, J. G. Desteese, S. Lu, C. H. Miller, P.Nyeng, J. Ma, D.Hammerstrom and V.V Viswanathan PNNL-17574 (2008). [2] A. K. Manohar, S. Malkhandi, B. Yang, C. Yang, G. K. Surya Prakash, and S. R. Narayanan, J. Electrochem. Soc , vol.159, (2012). [3] A. K. Manohar, C. Yang, S. Malkhandi, G. K. S. Prakash, and S. R. Narayanan, J. Electrochem. Soc, vol. 160, (2013). [4] A. C. Bastos, M. G. Ferreira, and a. M. Simões, Corros. Sci , vol. 48, (2006). [5] G. Williams and H. Neil McMurray, J. Electrochem. Soc , vol. 155, (2008). [6] G. Song and D. StJohn, J. Light Met , vol. 2, (2002).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qiao应助dgfhg采纳,获得10
2秒前
wdb完成签到,获得积分10
3秒前
3秒前
wanci应助不想看文献采纳,获得10
4秒前
Yunny完成签到,获得积分10
5秒前
开心的幼珊完成签到 ,获得积分10
6秒前
wdb发布了新的文献求助10
11秒前
12秒前
16秒前
17秒前
17秒前
17秒前
彭于晏应助Doinb采纳,获得10
19秒前
小蘑菇应助野性的沉鱼采纳,获得10
19秒前
21秒前
22秒前
Jau完成签到,获得积分0
26秒前
28秒前
自强不息完成签到,获得积分10
29秒前
30秒前
momo完成签到,获得积分10
31秒前
勤恳马里奥应助nulinuli采纳,获得10
32秒前
烂漫的涔雨完成签到,获得积分10
33秒前
33秒前
七堇完成签到,获得积分20
33秒前
liyang999完成签到 ,获得积分10
34秒前
Lshyong完成签到 ,获得积分10
35秒前
轮海完成签到,获得积分10
35秒前
天天快乐应助明亮元柏采纳,获得30
36秒前
38秒前
酷波er应助希格斯玻色子采纳,获得10
38秒前
机灵哲瀚完成签到,获得积分10
38秒前
40秒前
43秒前
44秒前
zxm发布了新的文献求助10
45秒前
藜藜藜在乎你完成签到 ,获得积分10
45秒前
xt完成签到,获得积分10
48秒前
KESON发布了新的文献求助20
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808