DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity

医学 眼科 裂隙灯 验光服务
作者
Tiarnán D L Keenan,Qingyu Chen,Elvira Agrón,Yih Chung Tham,Jocelyn Hui Lin Goh,Xiaofeng Lei,Yi Pin Ng,Yong Liu,Xinxing Xu,Ching‐Yu Cheng,Mukharram M. Bikbov,Jost B. Jonas,S. Bhandari,Geoffrey Broadhead,Marcus H. Colyer,J. Corsini,Chantal Cousineau-Krieger,William G. Gensheimer,David Josip Grašić,Tania Lamba
出处
期刊:Ophthalmology [Elsevier]
卷期号:129 (5): 571-584 被引量:66
标识
DOI:10.1016/j.ophtha.2021.12.017
摘要

To develop deep learning models to perform automated diagnosis and quantitative classification of age-related cataract from anterior segment photographs.DeepLensNet was trained by applying deep learning models to the Age-Related Eye Disease Study (AREDS) dataset.A total of 18 999 photographs (6333 triplets) from longitudinal follow-up of 1137 eyes (576 AREDS participants).Deep learning models were trained to detect and quantify nuclear sclerosis (NS; scale 0.9-7.1) from 45-degree slit-lamp photographs and cortical lens opacity (CLO; scale 0%-100%) and posterior subcapsular cataract (PSC; scale 0%-100%) from retroillumination photographs. DeepLensNet performance was compared with that of 14 ophthalmologists and 24 medical students.Mean squared error (MSE).On the full test set, mean MSE for DeepLensNet was 0.23 (standard deviation [SD], 0.01) for NS, 13.1 (SD, 1.6) for CLO, and 16.6 (SD, 2.4) for PSC. On a subset of the test set (substantially enriched for positive cases of CLO and PSC), for NS, mean MSE for DeepLensNet was 0.23 (SD, 0.02), compared with 0.98 (SD, 0.24; P = 0.000001) for the ophthalmologists and 1.24 (SD, 0.34; P = 0.000005) for the medical students. For CLO, mean MSE was 53.5 (SD, 14.8), compared with 134.9 (SD, 89.9; P = 0.003) for the ophthalmologists and 433.6 (SD, 962.1; P = 0.0007) for the medical students. For PSC, mean MSE was 171.9 (SD, 38.9), compared with 176.8 (SD, 98.0; P = 0.67) for the ophthalmologists and 398.2 (SD, 645.4; P = 0.18) for the medical students. In external validation on the Singapore Malay Eye Study (sampled to reflect the cataract severity distribution in AREDS), the MSE for DeepSeeNet was 1.27 for NS and 25.5 for PSC.DeepLensNet performed automated and quantitative classification of cataract severity for all 3 types of age-related cataract. For the 2 most common types (NS and CLO), the accuracy was significantly superior to that of ophthalmologists; for the least common type (PSC), it was similar. DeepLensNet may have wide potential applications in both clinical and research domains. In the future, such approaches may increase the accessibility of cataract assessment globally. The code and models are available at https://github.com/ncbi/deeplensnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
思源应助llllll采纳,获得10
1秒前
may完成签到,获得积分10
1秒前
慕青应助裴向雪采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
要好好看文献完成签到,获得积分10
2秒前
mutongchen完成签到,获得积分10
2秒前
惠儿关注了科研通微信公众号
2秒前
Lucas应助眰恦采纳,获得10
3秒前
greeeetwist发布了新的文献求助10
4秒前
4秒前
科研辣鸡发布了新的文献求助10
4秒前
4秒前
5秒前
你好发布了新的文献求助10
5秒前
5秒前
6秒前
xdc发布了新的文献求助10
6秒前
岁岁发布了新的文献求助10
7秒前
搜集达人应助TTD采纳,获得10
7秒前
在水一方应助航biubiu采纳,获得10
7秒前
7秒前
慕青应助amywang1931采纳,获得10
7秒前
7秒前
Rollei应助ada采纳,获得10
7秒前
GF完成签到,获得积分10
8秒前
流夏发布了新的文献求助10
8秒前
诚心醉柳发布了新的文献求助10
9秒前
桐桐应助Niki采纳,获得20
10秒前
骆承坤完成签到,获得积分10
10秒前
stand应助welbeck采纳,获得10
10秒前
Yang发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
X丶2X4完成签到,获得积分10
12秒前
852应助theverve采纳,获得10
12秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719991
求助须知:如何正确求助?哪些是违规求助? 5258347
关于积分的说明 15290002
捐赠科研通 4869605
什么是DOI,文献DOI怎么找? 2614876
邀请新用户注册赠送积分活动 1564872
关于科研通互助平台的介绍 1522051