材料科学
热重分析
接触角
碳纳米管
扫描电子显微镜
化学工程
纤维素
复合材料
吸水率
乙基纤维素
环氧氯丙烷
聚合物
工程类
作者
Yeqiang Lu,Weizhong Yuan
标识
DOI:10.1021/acsami.7b09160
摘要
Superhydrophobic/superoleophilic and reinforced ethyl cellulose (SEC) sponges were prepared by cross-linking EC with epichlorohydrin (ECH) and complexing with silanized carbon nanotubes (Si-CNTs) followed by coating nanosilica on the surface of porous sponges and subsequent modification with hexadecyltrimethoxysilane (HDTMS). These synergistic strategies endowed the SEC sponges with the superhydrophobic/superoleophilic properties (θwater = 158.2°, θoil = 0°, sliding angle = 3°) and outstanding mechanical properties (could bear the pressure of 28.6 kPa without damage). The unique micronanostructures and properties of the porous sponges were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and water contact angle measurements. The as prepared SEC sponges with high mechanical strength were able to collect a wide range of oils and organic solvents with absorption capacity up to 64 times of their own weight. Furthermore, the absorption capacity of the sponges decreased slightly to 86.4% of its initial value after 50 separation cycles, suggesting their excellent recyclable performance. The high efficiency and endurability of the sponges during oil/water separation made them ideal absorbent in oil spillage cleanup.
科研通智能强力驱动
Strongly Powered by AbleSci AI