单调多边形
自适应步长
梯度法
计算机科学
凸函数
数学优化
钥匙(锁)
正多边形
二次方程
选择(遗传算法)
应用数学
数学
算法
数值分析
数学分析
人工智能
几何学
计算机安全
作者
Giacomo Frassoldati,Luca Zanni,Gaetano Zanghirati
标识
DOI:10.3934/jimo.2008.4.299
摘要
This paper deals with gradient methods for minimizing $n$-dimen-sional strictly convex quadratic functions. Two new adaptive stepsize selection rules are presented and some key properties are proved. Practical insights on the effectiveness of the proposed techniques are given by a numerical comparison with the Barzilai-Borwein (BB) method, the cyclic/adaptive BB methods and two recent monotone gradient methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI