Casting Defect Detection and Classification of Convolutional Neural Network Based on Recursive Attention Model

卷积神经网络 人工智能 计算机科学 模式识别(心理学) 深度学习 人工神经网络 鉴定(生物学) 铸造 材料科学 复合材料 生物 植物
作者
Zhichao Zhao,Tiefeng Wu
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-11 被引量:7
标识
DOI:10.1155/2022/4385565
摘要

The method based on deep learning shows excellent performance in the recognition and classification of surface defects of some industrial products. The method based on deep learning has high efficiency in the identification and classification of surface defects of industrial products, and the false detection rate and missed detection rate are relatively low. However, the recognition accuracy of defect detection and classification of most industrial products needs to be improved, especially for those with similar contours and relatively large structural different casting. This paper takes casting defect detection as the goal and proposes a convolutional neural network casting defect detection and classification (RCNN-DC) algorithm based on the recursive attention model. Through this model, the casting can be better identified and detected, and casting defects can be avoided as much as possible, which is of great significance to the technological development of the industry. First, use a large amount of readily available defect-free sample data to detect anomalous defects. Next, we compare the accuracy and performance of the detection model and the general recognition model. The research results show that the test effect of the RCNN-DC casting defect detection network model is significantly better than the traditional detection model, with a classification accuracy of 96.67%. Then, we compare the RCNN-DC network with three classic popular networks, GooGleNet, ResNet-50, and AlexNet. Among them, AlexNet and ResNet-50 achieved 95.00% and 95.56% classification accuracy, respectively, while GooGleNet achieved slightly better results of 96.38%. In contrast, the accuracy of RCNN-DC is 1.67% higher than that of AlexNet, while the number of FLOPs is reduced by 17.2 times, and the accuracy is 1.09% higher than that of ResNet-50, while the number of FLOPs is reduced by 99.7 times, and the accuracy is higher than GooGleNet 0.29% while FLOPs whose number has been reduced by 36.5 times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助OMIT采纳,获得10
刚刚
2滴水发布了新的文献求助10
1秒前
1秒前
1秒前
sssxylyy完成签到,获得积分10
1秒前
泱泱完成签到,获得积分10
2秒前
乐乐应助狂暴的蜗牛0713采纳,获得10
2秒前
小芋发布了新的文献求助20
2秒前
xielunwen发布了新的文献求助10
4秒前
852应助1203采纳,获得10
5秒前
10 g发布了新的文献求助10
5秒前
慕青应助nnn采纳,获得10
5秒前
6秒前
科研老兵发布了新的文献求助20
6秒前
6秒前
6秒前
7秒前
KK发布了新的文献求助10
8秒前
科研通AI6应助Regulus采纳,获得10
8秒前
8秒前
kingwill发布了新的文献求助10
8秒前
8秒前
蓝胖子完成签到,获得积分10
9秒前
无糖的问题完成签到,获得积分20
10秒前
wt发布了新的文献求助10
10秒前
Murmansk发布了新的文献求助10
10秒前
spike完成签到,获得积分10
10秒前
无极微光应助小芋采纳,获得20
11秒前
开心小猪发布了新的文献求助10
11秒前
星星发布了新的文献求助10
12秒前
余地完成签到,获得积分10
12秒前
如约发布了新的文献求助10
12秒前
13秒前
研友_Z3vemn完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
充电宝应助平淡的雪卉采纳,获得10
14秒前
浮游应助夜星子采纳,获得10
14秒前
15秒前
田様应助无糖的问题采纳,获得10
15秒前
夏以乔木完成签到 ,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546683
求助须知:如何正确求助?哪些是违规求助? 4632489
关于积分的说明 14627325
捐赠科研通 4574069
什么是DOI,文献DOI怎么找? 2508092
邀请新用户注册赠送积分活动 1484663
关于科研通互助平台的介绍 1455826