Topicwise Separable Sentence Retrieval for Medical Report Generation

判决 可分离空间 情报检索 自然语言处理 计算机科学 人工智能 数学 数学分析
作者
Junting Zhao,Zhou Yang,Zhihao Chen,Huazhu Fu,Liang Wan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.04175
摘要

Automated radiology reporting holds immense clinical potential in alleviating the burdensome workload of radiologists and mitigating diagnostic bias. Recently, retrieval-based report generation methods have garnered increasing attention due to their inherent advantages in terms of the quality and consistency of generated reports. However, due to the long-tail distribution of the training data, these models tend to learn frequently occurring sentences and topics, overlooking the rare topics. Regrettably, in many cases, the descriptions of rare topics often indicate critical findings that should be mentioned in the report. To address this problem, we introduce a Topicwise Separable Sentence Retrieval (Teaser) for medical report generation. To ensure comprehensive learning of both common and rare topics, we categorize queries into common and rare types to learn differentiated topics, and then propose Topic Contrastive Loss to effectively align topics and queries in the latent space. Moreover, we integrate an Abstractor module following the extraction of visual features, which aids the topic decoder in gaining a deeper understanding of the visual observational intent. Experiments on the MIMIC-CXR and IU X-ray datasets demonstrate that Teaser surpasses state-of-the-art models, while also validating its capability to effectively represent rare topics and establish more dependable correspondences between queries and topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福的醉山完成签到,获得积分10
1秒前
果酱君完成签到,获得积分10
1秒前
nowss完成签到,获得积分10
1秒前
1秒前
逗逗完成签到,获得积分10
1秒前
1秒前
ty完成签到,获得积分10
1秒前
rainny发布了新的文献求助10
2秒前
kkk12245完成签到,获得积分20
2秒前
缓冲中完成签到 ,获得积分10
2秒前
橙果果完成签到,获得积分10
2秒前
宋某发布了新的文献求助10
2秒前
3秒前
LordRedScience完成签到,获得积分10
4秒前
逆天了呀完成签到,获得积分10
4秒前
勤奋的安梦完成签到,获得积分10
4秒前
闪闪的方盒完成签到,获得积分10
4秒前
BINGLING发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
FashionBoy应助机智的一笑采纳,获得30
5秒前
祝可盈完成签到,获得积分20
5秒前
6秒前
6秒前
研友_LkYoRZ完成签到,获得积分10
6秒前
Ava应助安静的怜蕾采纳,获得10
7秒前
Zippo完成签到,获得积分10
7秒前
7秒前
冷傲的元容完成签到,获得积分10
7秒前
zz完成签到 ,获得积分10
7秒前
N维完成签到,获得积分10
7秒前
7秒前
7秒前
王治豪发布了新的文献求助10
8秒前
Robertchen完成签到,获得积分0
8秒前
依依完成签到,获得积分10
8秒前
范同学完成签到,获得积分10
8秒前
9秒前
深情雨柏发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Life: The Science of Biology Digital Update 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4684061
求助须知:如何正确求助?哪些是违规求助? 4058862
关于积分的说明 12547670
捐赠科研通 3755007
什么是DOI,文献DOI怎么找? 2073947
邀请新用户注册赠送积分活动 1102794
科研通“疑难数据库(出版商)”最低求助积分说明 982095