Bayesian Network Inference for Low-Magnitude Nonnatural Seismic Event Discrimination

节点(物理) 灵敏度(控制系统) 震级(天文学) 贝叶斯概率 波形 事件(粒子物理) 贝叶斯推理 推论 光谱加速度 模式识别(心理学) 地震学 地质学 计算机科学 统计 数学 人工智能 峰值地面加速度 工程类 物理 地震动 量子力学 天文 电信 雷达 结构工程 电子工程
作者
Xueyan Li,Xiaolin Hou,Yinju Bian,Tingting Wang,Mengyi Ren,Yixiao Zhang,Wenjing Wang
出处
期刊:Seismological Research Letters [Seismological Society of America]
卷期号:95 (5): 2874-2885
标识
DOI:10.1785/0220230403
摘要

Abstract In response to the gaps in understanding the causal relationship between seismic waveform features and the types of seismic events, this research is focused on seismic events of low magnitude (ML≤3.0) in the North China region. Using the Bayesian network theory, we conduct an analysis to infer event types for natural earthquakes, artificial explosions, and mining collapses, and the outcomes achieved notable efficacy for the discrimination of seismic events. Through the analysis of seismic waveforms from 1818 events, we systematically extracted and quantified 55 features in temporal, spectral, and energy domains, which were then recoded as node variables for subsequent analysis. The new data set was subject to select nodes with strong associations to the node type. Subsequently, Bayesian network topologies were constructed using three different algorithms to reconstruct the custom network, calculating posterior probabilities and marginal probabilities. Simultaneously, an extensive evaluation with precision–recall curves of the network structure was carried out, encompassing accuracy, precision, recall, and F1-score. Ultimately, sensitivity analysis was performed on each node to reveal the extent of the influence of node variations on the inference of the node type. The findings showed that the sensitivity of discrimination of seismic events was notably high for several features, including high-frequency P/S spectral ratio values (11 to ∼20 Hz), central frequency, dominant frequency, average frequency, rise and decay average frequency, the real part of the complex cepstral coefficients, peak ground acceleration, and zero crossing. In the classification of natural earthquakes, artificial explosions, and mining collapses, it was observed that the probability of mining collapses was maximized when peak ground acceleration was less than 1526.08, and concurrently, the P/S spectral ratio (11 to ∼20 Hz) fell within the range of −0.25 to −0.02.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的发卡完成签到,获得积分10
刚刚
过时的浩轩完成签到 ,获得积分20
1秒前
暗黑同学完成签到,获得积分10
1秒前
昵称完成签到,获得积分10
4秒前
日富一日完成签到,获得积分10
4秒前
KYDD完成签到,获得积分10
7秒前
科研通AI5应助杳子尧采纳,获得10
7秒前
7秒前
斯文败类应助踏实的依柔采纳,获得10
8秒前
搜集达人应助star采纳,获得10
9秒前
10秒前
科研通AI5应助小林神采纳,获得10
12秒前
JasonSun完成签到,获得积分10
12秒前
Anna爱学习发布了新的文献求助10
12秒前
lezongyang发布了新的文献求助10
14秒前
15秒前
科研通AI5应助seraphmay采纳,获得10
16秒前
shadow完成签到,获得积分10
17秒前
李爱国应助沉静白翠采纳,获得10
17秒前
冷眸完成签到 ,获得积分10
19秒前
陈瑞娟完成签到 ,获得积分10
19秒前
19秒前
啦啦啦发布了新的文献求助10
20秒前
认真的不评完成签到,获得积分10
21秒前
烟花应助晴朗采纳,获得10
22秒前
23秒前
思源应助Panchael采纳,获得10
24秒前
xiaofeiyan完成签到 ,获得积分10
25秒前
John完成签到,获得积分10
25秒前
star发布了新的文献求助10
26秒前
研友_VZG7GZ应助活人微die采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
啦啦啦完成签到,获得积分20
28秒前
沉静白翠发布了新的文献求助10
28秒前
29秒前
脑洞疼应助Karry采纳,获得10
31秒前
直率的钢铁侠完成签到,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782938
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235420
捐赠科研通 3043338
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759033