Cyber threat attribution using unstructured reports in cyber threat intelligence

计算机科学 人工智能 计算机安全 机器学习 恶意软件 任务(项目管理) 鉴定(生物学) 网络攻击 领域(数学分析) 数学 植物 生物 数学分析 经济 管理
作者
Ehtsham Irshad,Abdul Basit Siddiqui
出处
期刊:Egyptian Informatics Journal [Elsevier BV]
卷期号:24 (1): 43-59 被引量:29
标识
DOI:10.1016/j.eij.2022.11.001
摘要

Cyber-threat attribution is the identification of attacker responsible for a cyber-attack. It is a challenging task as attacker uses different obfuscation and deception techniques to hide its identity. After an attack has occurred, digital forensic investigation is conducted to collect evidence from network/system logs. After investigation and collecting evidence reports are published in multiple formats such as text and PDF. There is no standard format for publishing these reports, so extracting meaningful information from these reports is a challenging task. Manual extraction of features from unstructured cyber-threat intelligence (CTI) is a difficult task. There is a need for an automated mechanism to extract features from unstructured reports and attribute cyber-threat actor (CTA). The aim of this research is to develop a mechanism to attribute or profile cyber threat actors (CTA) by extracting features from CTI reports. Moreover define a methodology to extract features from unstructured CTI reports by using natural language processing (NLP) techniques and then attributing cyber threat actor by using machine learning algorithms. Extracting features i.e., tactics, techniques, tools, malware, target organization/country and application by using novel embedding model known as" Attack2vec" which is trained on domain specific embeddings. Training model on domain specific embedding produces high results as compared to model train on general embeddings specially in the field of cyber security. Results of this novel model is compared with different methods. Machine learning algorithms such as decision tree, random forest, support vector machine is used for classification of CTA. This novel model produces high results as compared to other models with Accuracy of 96%, Precision of 96.4%, Recall of 95.58% and F1-measure of 95.75%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
1秒前
所所应助饼饼采纳,获得10
1秒前
量子星尘发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
小马甲应助嗯哼采纳,获得30
2秒前
戴帽子的花盆完成签到,获得积分10
2秒前
FPW完成签到 ,获得积分10
2秒前
彭洪泽完成签到,获得积分10
2秒前
科目三应助纭声采纳,获得10
3秒前
赘婿应助安安安安采纳,获得10
4秒前
Zz完成签到,获得积分10
4秒前
5秒前
5秒前
yyt发布了新的文献求助10
5秒前
maclogos发布了新的文献求助10
5秒前
小孙同学发布了新的文献求助10
5秒前
在水一方应助典雅的俊驰采纳,获得10
6秒前
阿伟发布了新的文献求助10
6秒前
6秒前
1111111发布了新的文献求助10
6秒前
7秒前
Qq发布了新的文献求助10
8秒前
samvega完成签到,获得积分10
8秒前
冯劫完成签到,获得积分10
9秒前
nannannan发布了新的文献求助10
9秒前
小小完成签到,获得积分10
10秒前
10秒前
感动世倌发布了新的文献求助10
11秒前
海绵宝宝发布了新的文献求助10
11秒前
Hello应助研友RH采纳,获得10
11秒前
12秒前
科研通AI2S应助wenjiaolin采纳,获得10
12秒前
林士萍完成签到,获得积分20
12秒前
光而不耀发布了新的文献求助10
12秒前
amo完成签到,获得积分10
13秒前
ongkianwhww完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
喜东东完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070491
求助须知:如何正确求助?哪些是违规求助? 4291579
关于积分的说明 13370992
捐赠科研通 4111872
什么是DOI,文献DOI怎么找? 2251722
邀请新用户注册赠送积分活动 1256838
关于科研通互助平台的介绍 1189480