量子算法
加速
插值(计算机图形学)
量子
量子相位估计算法
算法
量子计算机
功能(生物学)
计算机科学
量子力学
数学
物理
数学物理
量子纠错
人工智能
进化生物学
生物
运动(物理)
操作系统
作者
Duarte Magano,Miguel Murça
出处
期刊:Physical review
[American Physical Society]
日期:2022-12-16
卷期号:106 (6)
被引量:2
标识
DOI:10.1103/physreva.106.062419
摘要
The problem of phase estimation (or amplitude estimation) admits a quadratic quantum speedup. Wang, Higgott, and Brierley [Wang, Higgott, and Brierley, Phys. Rev. Lett. 122, 140504 (2019)] have shown that there is a continuous tradeoff between quantum speedup and circuit depth [by defining a family of algorithms known as $\ensuremath{\alpha}$-quantum phase estimation $(\ensuremath{\alpha}\text{\ensuremath{-}}\mathrm{QPE})$]. In this paper, we show that the scaling of $\ensuremath{\alpha}\text{\ensuremath{-}}\mathrm{QPE}$ can be naturally and succinctly derived within the framework of quantum singular value transformation (QSVT). From the QSVT perspective, a greater number of coherent oracle calls translates into a better polynomial approximation to the sign function, which is the key routine for solving phase estimation. The better the approximation to the sign function, the fewer samples one needs to determine the sign accurately. With this idea, we simplify the proof of $\ensuremath{\alpha}\text{\ensuremath{-}}\mathrm{QPE}$, while providing an interpretation of the interpolation parameters, and show that QSVT is a promising framework for reasoning about classical-quantum interpolations.
科研通智能强力驱动
Strongly Powered by AbleSci AI