The Application of Spearman Partial Correlation for Screening Predictors of Weight Loss in a Multiomics Dataset

减肥 相关性 生物标志物 微生物群 肥胖 队列 体质指数 偏相关 医学 组学 肿瘤科 生物 内科学 生物信息学 遗传学 数学 几何学
作者
Joel Corrêa da Rosa,José O. Alemán,Jason T. Mohabir,Yupu Liang,Jan L. Breslow,Peter R. Holt
出处
期刊:Omics A Journal of Integrative Biology [Mary Ann Liebert, Inc.]
卷期号:26 (12): 660-670 被引量:3
标识
DOI:10.1089/omi.2022.0135
摘要

Obesity has reached epidemic proportions in the United States, but little is known about the mechanisms of weight gain and weight loss. Integration of omics data is becoming a popular tool to increase understanding in such complex phenotypes. Biomarkers come in abundance, but small sample size remains a serious limitation in clinical trials. In the present study, we developed a strategy to screen predictors from a multiomics, high-dimensional, and longitudinal dataset from a small cohort of 10 women with obesity who were provided an identical very-low calorie diet. Our proposal explores the combinatorial space of potential predictors from transcriptomics, microbiome, metabolome, fecal bile acids, and clinical data with the application of the first-order Spearman partial correlation coefficient. Two statistics are proposed for screening predictors, the partial association score, and the persistent significance. We applied our strategy to predict rates of weight loss in our sample of participants in a hospital metabolic facility. Our method reduced an initial set of 42,000 biomarker candidates to 61 robust predictors. The results show baseline fecal bile acids and regulation in RT-polymerase chain reaction as the most predictive data sources in forecasting the rate of weight-loss. In summary, the present study proposes a strategy based on nonparametric statistics for ranking and screening predictors of weight loss from a multiomics study. The proposed biomarker screening strategy warrants further translational clinical investigation in obesity and other complex clinical phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助吕建安采纳,获得10
1秒前
嘿嘿嘿嘿完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
LHQ完成签到,获得积分20
4秒前
panpan完成签到,获得积分20
6秒前
汉堡包应助热心果汁采纳,获得10
7秒前
Jun2025发布了新的文献求助10
7秒前
May_9527发布了新的文献求助20
7秒前
9秒前
冷傲的广缘完成签到,获得积分10
10秒前
10秒前
小瑞关注了科研通微信公众号
12秒前
打打应助wang采纳,获得10
12秒前
13秒前
yyy完成签到,获得积分10
13秒前
星辰大海应助小欣采纳,获得10
14秒前
14秒前
14秒前
大力的孤风完成签到,获得积分10
15秒前
蒙古悍马完成签到,获得积分10
16秒前
zm完成签到,获得积分10
16秒前
清脆青槐发布了新的文献求助10
16秒前
苹果派关注了科研通微信公众号
16秒前
科研通AI6应助Jun2025采纳,获得10
16秒前
17秒前
共享精神应助jianglili采纳,获得10
17秒前
豆豆完成签到 ,获得积分10
18秒前
Bgeelyu发布了新的文献求助10
18秒前
Zx_1993应助May_9527采纳,获得20
19秒前
烟花应助flic采纳,获得30
19秒前
19秒前
英俊的铭应助欣欣采纳,获得10
20秒前
李爱国应助Pshan采纳,获得50
20秒前
123完成签到,获得积分10
20秒前
科研通AI6应助木樱采纳,获得10
20秒前
共享精神应助LHQ采纳,获得30
21秒前
21秒前
深藏Blue发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343132
求助须知:如何正确求助?哪些是违规求助? 4478698
关于积分的说明 13940563
捐赠科研通 4375705
什么是DOI,文献DOI怎么找? 2404201
邀请新用户注册赠送积分活动 1396695
关于科研通互助平台的介绍 1369094