TransFSM: Fetal Anatomy Segmentation and Biometric Measurement in Ultrasound Images Using a Hybrid Transformer

生物识别 人工智能 计算机科学 分割 计算机视觉 模式识别(心理学) 图像分割 特征提取
作者
Lei Zhao,Guanghua Tan,Bin Pu,Qianghui Wu,Hongliang Ren,Kenli Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 285-296 被引量:16
标识
DOI:10.1109/jbhi.2023.3328954
摘要

Biometric parameter measurements are powerful tools for evaluating a fetus's gestational age, growth pattern, and abnormalities in a 2D ultrasound. However, it is still challenging to measure fetal biometric parameters automatically due to the indiscriminate confusing factors, limited foreground-background contrast, variety of fetal anatomy shapes at different gestational ages, and blurry anatomical boundaries in ultrasound images. The performance of a standard CNN architecture is limited for these tasks due to the restricted receptive field. We propose a novel hybrid Transformer framework, TransFSM, to address fetal multi-anatomy segmentation and biometric measurement tasks. Unlike the vanilla Transformer based on a single-scale input, TransFSM has a deformable self-attention mechanism so it can effectively process multi-scale information to segment fetal anatomy with irregular shapes and different sizes. We devised a BAD to capture more intrinsic local details using boundary-wise prior knowledge, which compensates for the defects of the Transformer in extracting local features. In addition, a Transformer auxiliary segment head is designed to improve mask prediction by learning the semantic correspondence of the same pixel categories and feature discriminability among different pixel categories. Extensive experiments were conducted on clinical cases and benchmark datasets for anatomy segmentation and biometric measurement tasks. The experiment results indicate that our method achieves state-of-the-art performance in seven evaluation metrics compared with CNN-based, Transformer-based, and hybrid approaches. By Knowledge distillation, the proposed TransFSM can create a more compact and efficient model with high deploying potential in resource-constrained scenarios. Our study serves as a unified framework for biometric estimation across multiple anatomical regions to monitor fetal growth in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QianShenYu发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
星辰大海应助12采纳,获得10
1秒前
科研通AI5应助Dream采纳,获得50
2秒前
搜集达人应助直率依珊采纳,获得10
2秒前
2秒前
迟迟关注了科研通微信公众号
3秒前
Raine发布了新的文献求助10
3秒前
栗子发布了新的文献求助10
4秒前
斯文败类应助Yacon采纳,获得10
4秒前
咿咿呀呀发布了新的文献求助10
4秒前
4秒前
dw1g关注了科研通微信公众号
6秒前
ganzhongxin完成签到,获得积分10
6秒前
沫沫发布了新的文献求助10
6秒前
6秒前
楼萌黑发布了新的文献求助10
6秒前
999完成签到 ,获得积分10
6秒前
欣喜的火龙果完成签到,获得积分10
7秒前
弄巷发布了新的文献求助30
7秒前
7秒前
扁舟灬发布了新的文献求助10
7秒前
渊_发布了新的文献求助10
8秒前
科研通AI5应助Raine采纳,获得10
8秒前
dudu完成签到,获得积分10
9秒前
PN_Allen完成签到 ,获得积分10
10秒前
allover完成签到,获得积分10
10秒前
可爱的茈完成签到,获得积分10
12秒前
12发布了新的文献求助10
12秒前
研友_VZG7GZ应助沫沫采纳,获得10
13秒前
13秒前
文章多多发布了新的文献求助10
13秒前
高源高源完成签到 ,获得积分10
15秒前
SYLH应助科研通管家采纳,获得20
16秒前
Orange应助科研通管家采纳,获得10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803708
求助须知:如何正确求助?哪些是违规求助? 3348555
关于积分的说明 10339310
捐赠科研通 3064745
什么是DOI,文献DOI怎么找? 1682727
邀请新用户注册赠送积分活动 808390
科研通“疑难数据库(出版商)”最低求助积分说明 764082