Opto-thermal deformation fitting method based on a neural network and a transfer learning

泽尼克多项式 人工神经网络 均方误差 计算机科学 卷积神经网络 光学 均方根 算法 人工智能 数学 物理 波前 统计 量子力学
作者
Yue Pan,Motong Hu,Kailin Zhang,Xiping Xu
出处
期刊:Optics Letters [Optica Publishing Group]
卷期号:48 (22): 5851-5851
标识
DOI:10.1364/ol.505605
摘要

The thermal deformation fitting result of an optical surface is an important factor that affects the reliability of optical-mechanical-thermal integrated analysis. The traditional numerical methods are challenging to balance fitting accuracy and efficiency, especially the insufficient ability to deal with high-order Zernike polynomials. In this Letter, we innovatively proposed an opto-thermal deformation fitting method based on a neural network and a transfer learning to overcome shortcomings of numerical methods. The one-dimensional convolutional neural network (1D-CNN) model, which can represent deformation of the optical surface, is trained with Zernike polynomials as the input and the optical surface sag change as the output, and the corresponding Zernike coefficients are predicted by the identity matrix. Meanwhile, the trained 1D-CNN is further combined with the transfer learning to efficiently fit all thermal deformations of the same optical surface at different temperature conditions and avoids repeated training of the network. We performed thermal analysis on the main mirror of an aerial camera to verify the proposed method. The regression analysis of 1D-CNN training results showed that the determination coefficient is greater than 99.9%. The distributions of Zernike coefficients predicted by 1D-CNN and transfer learning are consistent. We conducted an error analysis on the fitting results, and the average values of the peak-valley, root mean square, and mean relative errors of the proposed method are 51.56%, 60.51, and 45.14% of the least square method, respectively. The results indicate that the proposed method significantly improves the fitting accuracy and efficiency of thermal deformations, making the optical-mechanical-thermal integrated analysis more reliable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lrcx完成签到 ,获得积分10
1秒前
冬日暖阳完成签到 ,获得积分10
1秒前
ZHZ完成签到,获得积分10
1秒前
科研通AI5应助phillip521125采纳,获得10
2秒前
jfeng完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
高贵的晓筠完成签到 ,获得积分10
5秒前
NovermberRain完成签到,获得积分10
8秒前
在九月完成签到 ,获得积分10
8秒前
真龙狂婿完成签到,获得积分10
9秒前
able完成签到 ,获得积分10
9秒前
RandyChen完成签到,获得积分10
10秒前
郝老头完成签到,获得积分0
11秒前
11秒前
清新的宛丝完成签到,获得积分10
12秒前
11mao11完成签到 ,获得积分10
13秒前
boymin2015完成签到 ,获得积分10
13秒前
吴天春完成签到,获得积分10
14秒前
Tonald Yang完成签到 ,获得积分20
16秒前
deway发布了新的文献求助10
17秒前
争当科研巨匠完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
科研通AI2S应助suam采纳,获得10
19秒前
19秒前
点点完成签到 ,获得积分10
20秒前
传奇3应助zhaochenyu采纳,获得10
20秒前
笔记本完成签到,获得积分0
21秒前
步步高完成签到,获得积分10
22秒前
默默灭绝完成签到 ,获得积分10
23秒前
欢呼妙菱完成签到,获得积分10
25秒前
27秒前
儒雅的蜜粉完成签到,获得积分10
28秒前
CipherSage应助zhaochenyu采纳,获得10
28秒前
dong完成签到,获得积分10
28秒前
李健应助zhang采纳,获得10
29秒前
西宁完成签到,获得积分10
29秒前
31秒前
彩色映雁完成签到 ,获得积分10
31秒前
嘟嘟发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4859481
求助须知:如何正确求助?哪些是违规求助? 4154624
关于积分的说明 12875020
捐赠科研通 3905768
什么是DOI,文献DOI怎么找? 2145789
邀请新用户注册赠送积分活动 1164900
关于科研通互助平台的介绍 1066859