清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-Guided Deep Learning for Prediction of Energy Production from Geothermal Reservoirs

利用 深度学习 人工智能 人工神经网络 计算机科学 机器学习 地温梯度 计算 数据驱动 领域(数学) 循环神经网络 物理 地球物理学 算法 计算机安全 数学 纯数学
作者
Zhen Qin,Anyue Jiang,Dave Faulder,Trenton T. Cladouhos,Behnam Jafarpour
出处
期刊:Geothermics [Elsevier BV]
卷期号:116: 102824-102824 被引量:8
标识
DOI:10.1016/j.geothermics.2023.102824
摘要

Predictive models are traditionally used for the development and management of geothermal reservoirs. While field operation optimization based on physics-based simulations offers dependable strategies, simulation models require detailed descriptions of reservoir conditions and properties and entail extensive computational efforts. As efficient alternatives to traditional physics-based simulation, data-driven predictive models such as deep learning-based models can provide fast predictions to facilitate complex iterative tasks that otherwise entail high computation time. However, purely data-driven models that are trained using limited data often provide physically inconsistent predictions and fail to generalize beyond the training data. This has important consequences in optimization applications where, during optimization, the well control strategies are likely to fall beyond the training data. These limitations undermine the suitability and strength of data-driven models in scientific and engineering applications, where the amount of data is typically limited but physical laws are well-established and frequently used. To address the above challenges, we propose a novel physics-guided machine learning model by incorporating the general structure of the physics-based equations into deep learning models. A typical approach for incorporating physics is adding physics-based constraints in the loss function to regularize the trainable parameters. However, this approach does not exploit or adapt the architecture of the neural network. In this work, the architecture of the proposed recurrent neural networks (RNN) is designed to represent the differential equations of the subsurface flow system. We present the physics-guided RNN models in detail and demonstrate their connection to the underlying differential equations describing the fluid flow physics. We investigate the prediction performance of the proposed models by first applying them to controlled example to evaluate their extrapolation power, before using them with simulated and field datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的凝丝完成签到,获得积分10
6秒前
bellapp完成签到 ,获得积分10
9秒前
Dong完成签到 ,获得积分10
10秒前
minnie完成签到 ,获得积分10
12秒前
胡可完成签到 ,获得积分10
1分钟前
乘风完成签到,获得积分10
1分钟前
疯狂的迪子完成签到 ,获得积分10
1分钟前
AU完成签到 ,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
王波完成签到 ,获得积分10
2分钟前
嘿嘿完成签到 ,获得积分10
2分钟前
王闪闪完成签到,获得积分10
2分钟前
无情夏寒完成签到 ,获得积分10
2分钟前
科目三应助斯文怀蕾采纳,获得10
2分钟前
小宝完成签到,获得积分10
2分钟前
小西完成签到 ,获得积分10
2分钟前
斯文怀蕾完成签到,获得积分10
2分钟前
lilaccalla完成签到 ,获得积分10
2分钟前
2分钟前
斯文怀蕾发布了新的文献求助10
2分钟前
路过完成签到 ,获得积分10
2分钟前
现实的俊驰完成签到 ,获得积分10
2分钟前
jokerhoney完成签到,获得积分10
3分钟前
aumppae完成签到 ,获得积分20
3分钟前
violetlishu完成签到 ,获得积分10
4分钟前
cadcae完成签到,获得积分10
4分钟前
tlh完成签到 ,获得积分10
4分钟前
火鸟完成签到,获得积分20
4分钟前
胖小羊完成签到 ,获得积分10
5分钟前
creep2020完成签到,获得积分10
6分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
jasmine完成签到 ,获得积分10
6分钟前
6分钟前
alec发布了新的文献求助10
6分钟前
方沅完成签到,获得积分10
6分钟前
Shennian完成签到 ,获得积分10
7分钟前
7分钟前
ljl86400完成签到,获得积分10
7分钟前
iorpi完成签到,获得积分10
7分钟前
Akim应助ZH的天方夜谭采纳,获得10
7分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349040
关于积分的说明 10341160
捐赠科研通 3065188
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600