Spatial–Temporal Characteristics and Influencing Factors of Land-Use Carbon Emissions: An Empirical Analysis Based on the GTWR Model

土地利用 地理 空间异质性 驱动因素 人口 环境资源管理 可持续发展 经济地理学 自然地理学 环境科学 生态学 人口学 中国 生物 考古 社会学
作者
Jie He,Jun Yang
出处
期刊:Land [MDPI AG]
卷期号:12 (8): 1506-1506 被引量:28
标识
DOI:10.3390/land12081506
摘要

An in-depth comprehension of the spatial–temporal characteristics of land-use carbon emissions (LUCE), along with their potential influencing factors, is of high scientific significance for the realization of low-carbon land use and sustainable urban development. Academic investigations pertaining to LUCE predominantly encompass three key dimensions: assessment, optimization, and characterization research. This study aimed to investigate the spatial and temporal variations in LUCE within Zhejiang Province by analyzing data from 11 cities and identifying the key factors influencing these emissions. This research work employed the geographically and temporally weighted regression (GTWR) model to explore the patterns of variation in these factors across each city. The results reveal that (1) the temporal changes in LUCE display two predominant trends, while the spatial distribution exhibits a distinct “high in the northeast and low in the southwest” divergence; (2) the average intensity of each factor follows the order of economic level > government intervention > urban compactness > public facilities level > urban greening level > industrial structure > population density; (3) and the influencing factors exhibit significant spatial and temporal heterogeneity, with varying direction and intensity of effects for different cities at different stages of development. This study integrated the dimensions of time and space, systematically examining the evolutionary trends of influencing factors on LUCE within each region. Consequently, it contributes to the comprehension of the spatiotemporal effects associated with the driving mechanisms of LUCE. Moreover, it offers a foundation for formulating customized patterns and strategies to mitigate such emissions, taking into account specific local contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助哎呀我去采纳,获得30
刚刚
何何完成签到,获得积分10
刚刚
热心的思烟完成签到,获得积分10
刚刚
江舟添盛望完成签到,获得积分10
1秒前
tyq发布了新的文献求助10
1秒前
Akim应助wu采纳,获得10
1秒前
WXR完成签到,获得积分10
1秒前
1秒前
lize5493发布了新的文献求助30
2秒前
呜哈哈哈哈完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
dew应助XYNW采纳,获得10
4秒前
4秒前
王了了发布了新的文献求助10
5秒前
5秒前
5秒前
饭特稀发布了新的文献求助10
5秒前
求知的周完成签到,获得积分10
6秒前
Hilda007应助哎呀我去采纳,获得10
6秒前
袁123发布了新的文献求助10
7秒前
汉堡包应助冷静橘子采纳,获得10
7秒前
7秒前
慕青应助谦让皮卡丘采纳,获得10
7秒前
7秒前
赵成龙发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
hu55完成签到,获得积分10
9秒前
小雷要学习完成签到,获得积分10
9秒前
偷书贼完成签到,获得积分10
9秒前
9秒前
9秒前
傅宛白完成签到,获得积分10
10秒前
10秒前
叉叉桑完成签到,获得积分10
10秒前
Jie完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434920
求助须知:如何正确求助?哪些是违规求助? 4547152
关于积分的说明 14206477
捐赠科研通 4467255
什么是DOI,文献DOI怎么找? 2448439
邀请新用户注册赠送积分活动 1439416
关于科研通互助平台的介绍 1416136