Electrohydrodynamic Printed Ultramicro AgNPs Thin-Film Temperature Sensor

电流体力学 符号 聚二甲基硅氧烷 材料科学 纳米技术 分析化学(期刊) 数学 物理 化学 色谱法 量子力学 电场 算术
作者
Yingping He,Hongyu Chen,Lanlan Li,Jin Liu,Maocheng Guo,Zhixuan Su,Bowen Duan,Yang Zhao,Daoheng Sun,Zhenyin Hai
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (18): 21018-21028 被引量:11
标识
DOI:10.1109/jsen.2023.3302355
摘要

To achieve high-density and arrayed temperature sensing, thin-film temperature sensors require a multilayer structure and miniaturized preparation technology. Currently, screen printing, direct writing by squeeze, and MEMS are the main methods for preparing thin-film sensors; however, the film linewidth produced by screen printing or direct writing by squeeze is impossible to achieve width within $10 \mu \text{m}$ , while MEMS is costly, and limited in terms of target materials. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than $10 \mu \text{m}$ width. In this study, we propose a method using only EHD printing to prepare ultramicro thin-film temperature sensors, including an AgNPs sensitive layer and polydimethylsiloxane (PDMS) encapsulation layer. The area of the AgNPs film sensitive layer is less than $120\times 120\,\,\mu \text{m}$ , with an average linewidth of less than $10 \mu \text{m}$ , and a film thickness of less than 200 nm. The printing range of the PDMS encapsulation layer is $300\times 300\,\,\mu \text{m}$ , with a minimum film thickness of 567 nm. The performance test results show that the ultramicro AgNPs thin-film temperature sensor after EHD printing of PDMS encapsulation has a higher temperature measurement upper limit. The hysteresis error was ±0.1309%, and the repeatability error was ±0.3311%, both much lower than previously reported. The successful fabrication of ultramicro thin-film temperature sensors using EHD printing suggests the potential of this method to supercede MEMS for achieving high-density and arrayed temperature sensing in limited space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡发布了新的文献求助10
刚刚
Jasper应助灵泽采纳,获得10
1秒前
1秒前
2秒前
2秒前
圆彰七大发布了新的文献求助10
2秒前
大个应助红小豆采纳,获得10
3秒前
Jabowoo发布了新的文献求助10
3秒前
3秒前
科研小陈发布了新的文献求助10
3秒前
酷波er应助王小西采纳,获得10
3秒前
在水一方应助Lemon采纳,获得10
4秒前
SciGPT应助宁宁宁采纳,获得10
4秒前
Oliver发布了新的文献求助10
4秒前
Aspirin完成签到,获得积分10
4秒前
积极的罡发布了新的文献求助10
4秒前
HopeStar发布了新的文献求助10
4秒前
4秒前
善学以致用应助孤勇者采纳,获得30
5秒前
圈圈儿完成签到,获得积分20
5秒前
包元霜发布了新的文献求助10
5秒前
赘婿应助呼啦啦采纳,获得10
6秒前
23完成签到,获得积分10
6秒前
Zn0103完成签到 ,获得积分10
7秒前
冷静的蚂蚁完成签到,获得积分10
8秒前
DaHai完成签到,获得积分10
8秒前
向北游发布了新的文献求助10
8秒前
LastXUAN完成签到,获得积分10
8秒前
HopeStar完成签到,获得积分10
9秒前
风中海亦关注了科研通微信公众号
9秒前
wyt发布了新的文献求助10
10秒前
10秒前
谦玉完成签到,获得积分10
11秒前
cc完成签到,获得积分10
11秒前
桔梗完成签到,获得积分10
11秒前
圆彰七大完成签到,获得积分10
11秒前
11秒前
qiaokizhang完成签到,获得积分10
11秒前
今后应助4U采纳,获得10
11秒前
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813