BookKD: A novel knowledge distillation for reducing distillation costs by decoupling knowledge generation and learning

计算机科学 蒸馏 人工智能 机器学习 熵(时间箭头) 平滑的 间歇精馏 分馏 化学 物理 有机化学 量子力学 计算机视觉
作者
Songling Zhu,Ronghua Shang,Ke Tang,Songhua Xu,Yangyang Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:279: 110916-110916 被引量:6
标识
DOI:10.1016/j.knosys.2023.110916
摘要

Knowledge distillation guides student networks’ training and enhances their performance through excellent teacher networks. However, along with the performance advantages, knowledge distillation also entails a huge computational burden, sometimes tens or even hundreds of times that of traditional training methods. So, this paper designs a book-based knowledge distillation (BookKD) to minimize the costs of knowledge distillation while improving performance. First, a decoupling-based knowledge distillation framework is designed. By decoupling the traditional knowledge distillation process into two independent sub-processes, book-making and book-learning, knowledge distillation can be completed with little resource consumption. Second, a book-making method based on knowledge ensemble and knowledge regularization is developed, which makes books by organizing and processing the knowledge generated by teachers. These books can replace these teachers to provide sufficient knowledge with little distillation costs. Finally, a book-learning method based on entropy dynamic adjustment and label smoothing is designed. The entropy dynamic adjustment optimizes the training loss and mitigates student networks’ difficulty in learning books. Label smoothing alleviates the student network’s over-confidence in ground truth labels, which increases its attention to the class similarity knowledge in books. BookKD is tested on three image classification datasets, CIFAR100, ImageNet and ImageNet100, and an object detection dataset PASCAL VOC 2007. The experiment results indicate the advantages of BookKD in reducing distillation costs and improving distillation performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zhaohui采纳,获得10
刚刚
刚刚
小辫儿完成签到,获得积分10
1秒前
1秒前
摅羽完成签到 ,获得积分10
1秒前
落枫完成签到,获得积分10
2秒前
小马甲应助欣欣向荣采纳,获得10
2秒前
wwbb完成签到 ,获得积分20
4秒前
4秒前
5秒前
cchx发布了新的文献求助10
5秒前
要减肥笑阳完成签到 ,获得积分10
5秒前
nancylan应助坚强哑铃采纳,获得10
5秒前
怪力kitty完成签到,获得积分10
6秒前
JIaaaa完成签到 ,获得积分20
6秒前
活力的紫菜完成签到,获得积分10
6秒前
123完成签到,获得积分10
7秒前
wuzhenwei完成签到,获得积分10
7秒前
Bosen完成签到,获得积分10
8秒前
8秒前
小辫儿发布了新的文献求助10
8秒前
9秒前
翟永胜发布了新的文献求助10
9秒前
嘎嘎完成签到,获得积分10
9秒前
伍柒完成签到 ,获得积分10
10秒前
乐乐应助帅气的迎夏采纳,获得10
10秒前
甜磕完成签到,获得积分10
11秒前
11秒前
11秒前
领导范儿应助FeiFeiup采纳,获得10
11秒前
蜉蝣完成签到,获得积分10
12秒前
优秀友容完成签到 ,获得积分20
12秒前
Zx_1993应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
Harry应助科研通管家采纳,获得10
13秒前
SCULGJ应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
SCULGJ应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535849
求助须知:如何正确求助?哪些是违规求助? 4623645
关于积分的说明 14588121
捐赠科研通 4564162
什么是DOI,文献DOI怎么找? 2501473
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451766