An X-Ray-Based Automatic Welding Defect Detection Method for Special Equipment System

焊接 计算机科学 管道(软件) 残余物 特征(语言学) 精确性和召回率 人工智能 实时计算 算法 工程类 机械工程 语言学 哲学 程序设计语言
作者
Fengyuan Zuo,Jinhai Liu,Zhao Xiang,Lixin Chen,Lei Wang
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 2241-2252 被引量:17
标识
DOI:10.1109/tmech.2023.3327713
摘要

In the special equipment systems, welding quality assessment based on X-ray flaw detection is related to the industrial production safety. As a key component in weld quality monitoring, automatic defect detection system aims to locate and identify numerous welding defects (e.g., air holes and cracks). Some current defect detection methods are difficult to accurately detect dense and small defects in low-quality X-ray images. In order to tackle the current challenges, this article proposes an effective weld defect detection method, termed integrated and iterative deep network (I2D-Net). First, the original weld image is decomposed by using frequency domain filtering to make full utilization of high- and low-frequency information and enhance the weak defect features. Second, a parallel detection network based on residual connection blocks of different depth and width is designed, which can flexibly capture defect features from multiple perspectives. Then, an integrated and iterative model prediction method is proposed to better extract the feature representation of small defects, thus effectively improving the overall performance. In the experiment, we built a hardware testing platform and conducted a large number of defect detection experiments and analyses. In addition, we also elaborated on practical application cases to prove that the proposed method has high industrial application value. Finally, the evaluation results of the datasets of weld defects of pressure pipeline and vessel show that the proposed I2D-Net is superior to the state-of-the-art (SoTA) methods in terms of average precision (AP increased by 7.7%, recall increased by 11.5%, and detection rate reached 98.4%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦秋烟发布了新的文献求助10
刚刚
小杨发布了新的文献求助10
1秒前
2秒前
火星上玫瑰完成签到,获得积分10
8秒前
田様应助wyp采纳,获得10
9秒前
Derek完成签到,获得积分0
9秒前
10秒前
11秒前
12秒前
13秒前
dfghjkl发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
66wudi发布了新的文献求助10
16秒前
tian发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
小赵完成签到 ,获得积分10
18秒前
ooook完成签到 ,获得积分10
19秒前
积极慕梅应助Eurus采纳,获得50
22秒前
科研通AI5应助tian采纳,获得10
22秒前
哲学之父发布了新的文献求助10
22秒前
22秒前
wyp发布了新的文献求助10
23秒前
24秒前
呆呆要努力完成签到 ,获得积分10
26秒前
wonder123应助qw1采纳,获得10
26秒前
科研通AI2S应助qw1采纳,获得10
26秒前
yiheng发布了新的文献求助10
26秒前
文献求助发布了新的文献求助10
27秒前
害羞小刺猬完成签到,获得积分10
28秒前
28秒前
研友_VZG7GZ应助CY采纳,获得10
28秒前
麻薯包完成签到,获得积分10
29秒前
wyp完成签到,获得积分10
32秒前
33秒前
34秒前
量子星尘发布了新的文献求助10
37秒前
Foch发布了新的文献求助10
38秒前
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864287
求助须知:如何正确求助?哪些是违规求助? 3406572
关于积分的说明 10650464
捐赠科研通 3130561
什么是DOI,文献DOI怎么找? 1726469
邀请新用户注册赠送积分活动 831749
科研通“疑难数据库(出版商)”最低求助积分说明 780004