Real‐time detection of Angelica dahurica tablet using YOLOX_am

计算机科学 分类 人工智能 效率低下 模式识别(心理学) 加权 特征(语言学) 机制(生物学) 机器学习 算法 医学 语言学 哲学 认识论 经济 放射科 微观经济学
作者
Zheng Qin,Xinying Li,Lei Yan,Pengle Cheng,Ying Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:46 (12)
标识
DOI:10.1111/jfpe.14480
摘要

Abstract In the production of Angelica dahurica tablet (ADT), the manual sorting approach often leads to inefficiency, inconsistent standards, and subjective grading results. The traditional machine vision‐based sorting method, while helping to reduce the demand for labor in factories, suffers from problems such as incomplete contour detection and poor classification of dahurica tablets. To address the above problems, this paper proposes YOLOX_am, a novel deep learning‐based network that combines the fast detection ability of YOLOX and the feature weighting ability of the attention mechanism. In addition, a real‐time sorting system for dahurica tablets is also built and YOLOX_am is deployed in it. The experimental results show that the mAP of ADT's detection using the proposed model reaches 83.53%, which outperforms the original network YOLOX by 4.88%. Moreover, the detection speed of YOLOX_am reaches 1390 ms per image, which meets the requirement of real‐time sorting. Therefore, the combination of YOLOX and the attention mechanism is feasible and effective. YOLOX_am is both fast and accurate for ADT's detection and can be deployed in the sorting system to meet actual production needs. Practical applications The traditional classification of defects in herbal tablets mainly relies on manual detection. This paper introduces a deep learning method into the sorting of herbal tablets. To solve the problem of subtle differentiation of tablets' defects, a neural network structure that can quickly and accurately detect small defective samples is proposed. This network has been applied to practical production and achieved high effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
迷人的傲珊完成签到,获得积分10
1秒前
风清扬发布了新的文献求助10
1秒前
Baiff完成签到,获得积分10
3秒前
桐桐应助narcol采纳,获得10
4秒前
子期关注了科研通微信公众号
4秒前
4秒前
5秒前
5秒前
ZZ发布了新的文献求助10
5秒前
FashionBoy应助西瓜采纳,获得10
5秒前
6秒前
王老裂发布了新的文献求助20
6秒前
无可匹敌的饭量完成签到,获得积分10
6秒前
6秒前
Sky36001完成签到,获得积分10
7秒前
夜雨听笑完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Sun完成签到,获得积分10
9秒前
善学以致用应助简简简采纳,获得30
9秒前
浮游应助Scidog采纳,获得10
10秒前
zly完成签到 ,获得积分10
10秒前
张博文发布了新的文献求助10
10秒前
10秒前
ASD发布了新的文献求助10
11秒前
xue发布了新的文献求助10
12秒前
冷静石头完成签到,获得积分10
12秒前
ling完成签到,获得积分10
13秒前
hututu完成签到 ,获得积分10
13秒前
skycause完成签到,获得积分10
15秒前
yfzhang完成签到 ,获得积分10
15秒前
Dan完成签到,获得积分10
16秒前
芋圆发布了新的文献求助10
16秒前
星辰大海应助张博文采纳,获得10
16秒前
王老裂完成签到,获得积分10
17秒前
cwj完成签到,获得积分10
18秒前
able应助weqhdgjfk采纳,获得30
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343531
求助须知:如何正确求助?哪些是违规求助? 4479101
关于积分的说明 13941626
捐赠科研通 4376133
什么是DOI,文献DOI怎么找? 2404464
邀请新用户注册赠送积分活动 1396972
关于科研通互助平台的介绍 1369302