Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study

部分 化学 没食子酸 分子动力学 生物物理学 盐(化学) 立体化学 组合化学 生物化学 有机化学 计算化学 生物 核化学
作者
Rong-zu Nie,S.L. Zhang,Xianzhong Yan,Feng Kong,Yuanzhi Lao,Yong Bao
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:253: 127002-127002
标识
DOI:10.1016/j.ijbiomac.2023.127002
摘要

The formation of Aβ into amyloid fibrils was closely connected to AD, therefore, the Aβ aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aβ amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the β-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
凝子老师发布了新的文献求助10
2秒前
白瓜完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
4秒前
4秒前
斯文钢笔完成签到 ,获得积分10
5秒前
Hh发布了新的文献求助10
6秒前
司马天寿发布了新的文献求助10
7秒前
上官若男应助lio采纳,获得10
7秒前
wsnice应助呼呼采纳,获得20
9秒前
科研通AI5应助善良的路灯采纳,获得10
9秒前
11秒前
司马天寿完成签到,获得积分20
13秒前
13秒前
汤圆完成签到,获得积分10
14秒前
bitahu发布了新的文献求助10
14秒前
希望天下0贩的0应助lixm采纳,获得10
14秒前
科研通AI2S应助敦敦采纳,获得10
15秒前
16秒前
_呱_应助楼台杏花琴弦采纳,获得50
17秒前
咸鱼一号发布了新的文献求助10
17秒前
正经俠发布了新的文献求助10
17秒前
李志远完成签到,获得积分10
18秒前
ghh发布了新的文献求助10
18秒前
19秒前
77paocai完成签到,获得积分10
20秒前
CCL完成签到,获得积分10
21秒前
明亮的绫完成签到 ,获得积分10
21秒前
祖诗云完成签到,获得积分0
22秒前
jiewen发布了新的文献求助10
24秒前
24秒前
Oz完成签到,获得积分10
24秒前
zhukun发布了新的文献求助10
25秒前
25秒前
28秒前
香蕉觅云应助oliver501采纳,获得10
28秒前
正经俠完成签到 ,获得积分20
29秒前
YY完成签到 ,获得积分10
30秒前
清秀灵薇发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849