Rail Surface Defect Detection Based on Improved UPerNet and Connected Component Analysis

计算机科学 杠杆(统计) 分割 人工智能 规范化(社会学) 像素 解析 变压器 模式识别(心理学) 数据挖掘 电压 物理 量子力学 社会学 人类学
作者
Yongzhi Min,Jiafeng Li,Yaxing Li
出处
期刊:Computers, materials & continua 卷期号:77 (1): 941-962 被引量:3
标识
DOI:10.32604/cmc.2023.041182
摘要

To guarantee the safety of railway operations, the swift detection of rail surface defects becomes imperative. Traditional methods of manual inspection and conventional nondestructive testing prove inefficient, especially when scaling to extensive railway networks. Moreover, the unpredictable and intricate nature of defect edge shapes further complicates detection efforts. Addressing these challenges, this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network (UPerNet) tailored for rail surface defect detection. Notably, the Swin Transformer Tiny version (Swin-T) network, underpinned by the Transformer architecture, is employed for adept feature extraction. This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference. The model’s efficiency is further amplified by the window-based self-attention, which minimizes the model’s parameter count. We implement the cross-GPU synchronized batch normalization (SyncBN) for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships. Experimental evaluations underscore the efficacy of our improved UPerNet, with results demonstrating Pixel Accuracy (PA) scores of 91.39% and 93.35%, Intersection over Union (IoU) values of 83.69% and 87.58%, Dice Coefficients of 91.12% and 93.38%, and Precision metrics of 90.85% and 93.41% across two distinct datasets. An increment in detection accuracy was discernible. For further practical applicability, we deploy semantic segmentation of rail surface defects, leveraging connected component processing techniques to distinguish varied defects within the same frame. By computing the actual defect length and area, our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核平铀善完成签到,获得积分10
1秒前
郭璐完成签到,获得积分10
2秒前
搜集达人应助Bzz采纳,获得10
2秒前
不爱吃鱼的猫完成签到,获得积分10
3秒前
科研通AI5应助快乐滑板采纳,获得10
5秒前
幽默的乐双完成签到,获得积分10
6秒前
赘婿应助郭璐采纳,获得10
7秒前
昏睡的蟠桃应助maybe采纳,获得200
13秒前
18秒前
鱼鱼完成签到,获得积分10
18秒前
20秒前
闪亮的季节应助Fushuai采纳,获得30
20秒前
森诺完成签到 ,获得积分10
23秒前
wei发布了新的文献求助10
27秒前
英俊的铭应助郑波涛采纳,获得10
28秒前
28秒前
Crystal完成签到,获得积分10
29秒前
物理苟完成签到,获得积分10
30秒前
不安储发布了新的文献求助10
35秒前
SYLH应助vespa采纳,获得10
38秒前
SYLH应助vespa采纳,获得10
38秒前
39秒前
41秒前
忧伤的八宝粥完成签到,获得积分10
42秒前
Owen应助hzk采纳,获得50
42秒前
巴斯光年发布了新的文献求助10
45秒前
LLxiaolong发布了新的文献求助10
46秒前
48秒前
m(_._)m完成签到 ,获得积分0
49秒前
capon完成签到,获得积分10
49秒前
乙醇完成签到 ,获得积分10
50秒前
颜凡桃完成签到,获得积分10
51秒前
英姑应助大方小白采纳,获得10
51秒前
深情安青应助大方小白采纳,获得10
51秒前
款冬完成签到,获得积分10
52秒前
52秒前
111123123123完成签到 ,获得积分10
53秒前
zhanghhsnow发布了新的文献求助20
54秒前
54秒前
活力的珊完成签到 ,获得积分10
56秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846044
求助须知:如何正确求助?哪些是违规求助? 3388436
关于积分的说明 10553093
捐赠科研通 3108972
什么是DOI,文献DOI怎么找? 1713299
邀请新用户注册赠送积分活动 824679
科研通“疑难数据库(出版商)”最低求助积分说明 774982