概括性
计算机科学
特征(语言学)
特征提取
图形
人工智能
财产(哲学)
机器学习
算法
理论计算机科学
哲学
语言学
认识论
心理学
心理治疗师
作者
Chuan-Nan Li,Han-Pu Liang,Xie Zhang,Zijing Lin,Su‐Huai Wei
标识
DOI:10.1038/s41524-023-01122-4
摘要
Abstract Structural search and feature extraction are a central subject in modern materials design, the efficiency of which is currently limited, but can be potentially boosted by machine learning (ML). Here, we develop an ML-based prediction-analysis framework, which includes a symmetry-based combinatorial crystal optimization program (SCCOP) and a feature additive attribution model, to significantly reduce computational costs and to extract property-related structural features. Our method is highly accurate and predictive, and extracts structural features from desired structures to guide materials design. We first test SCCOP on 35 typical compounds to demonstrate its generality. As a case study, we apply our approach to a two-dimensional B-C-N system, which identifies 28 previously undiscovered stable structures out of 82 compositions; our analysis further establishes the structural features that contribute most to energy and bandgap. Compared to conventional approaches, SCCOP is about 10 times faster while maintaining a comparable accuracy. Our framework is generally applicable to all types of systems for precise and efficient structural search, providing insights into the relationship between ML-extracted structural features and physical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI