Acetylacetone modulated TiO 2 nanoparticles for low‐temperature solution processable perovskite solar cell

乙酰丙酮 钙钛矿(结构) 材料科学 纳米颗粒 能量转换效率 化学工程 钙钛矿太阳能电池 卤化物 单独一对 太阳能电池 纳米技术 光电子学 无机化学 化学 有机化学 分子 工程类
作者
Seok Yeong Hong,Hyong Joon Lee,Jin Kyoung Park,Jin Hyuck Heo,Sang Hyuk Im
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (15): 22819-22831 被引量:4
标识
DOI:10.1002/er.8586
摘要

International Journal of Energy ResearchVolume 46, Issue 15 p. 22819-22831 RESEARCH ARTICLE Acetylacetone modulated TiO2 nanoparticles for low-temperature solution processable perovskite solar cell Seok Yeong Hong, Seok Yeong Hong Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of KoreaSearch for more papers by this authorHyong Joon Lee, Hyong Joon Lee Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of KoreaSearch for more papers by this authorJin Kyoung Park, Jin Kyoung Park Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of KoreaSearch for more papers by this authorJin Hyuck Heo, Corresponding Author Jin Hyuck Heo [email protected] Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea Correspondence Jin Hyuck Heo and Sang Hyuk Im, Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Email: [email protected], [email protected]Search for more papers by this authorSang Hyuk Im, Corresponding Author Sang Hyuk Im [email protected] orcid.org/0000-0001-7081-5959 Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea Correspondence Jin Hyuck Heo and Sang Hyuk Im, Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Email: [email protected], [email protected]Search for more papers by this author Seok Yeong Hong, Seok Yeong Hong Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of KoreaSearch for more papers by this authorHyong Joon Lee, Hyong Joon Lee Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of KoreaSearch for more papers by this authorJin Kyoung Park, Jin Kyoung Park Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of KoreaSearch for more papers by this authorJin Hyuck Heo, Corresponding Author Jin Hyuck Heo [email protected] Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea Correspondence Jin Hyuck Heo and Sang Hyuk Im, Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Email: [email protected], [email protected]Search for more papers by this authorSang Hyuk Im, Corresponding Author Sang Hyuk Im [email protected] orcid.org/0000-0001-7081-5959 Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea Correspondence Jin Hyuck Heo and Sang Hyuk Im, Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Email: [email protected], [email protected]Search for more papers by this author First published: 04 September 2022 https://doi.org/10.1002/er.8586Citations: 1 Seok Yeong Hong and Hyong Joon Lee contributed equally to this work. Funding information: Ministry of Science, ICT and Future Planning, Grant/Award Numbers: 2021R1A5A6002853, 2022R1A2C3004964 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary TiO2 has been widely adopted as an electron transport layer during the fabrication of efficient metal halide perovskite solar cells (MHP-SCs). In this study, we prepared acetylacetone (Acac)-modulated TiO2 nanoparticles (NPs) suitable for low-temperature solution processing via the sol-gel method. Acac coordinates with TiO2 NPs and preferably passivates surface trap states which are detrimental to photovoltaic performance. Moreover, the Acac-TiO2 NPs establish a favorable band alignment for charge extraction by donating the lone pair electron. As a result, Acac-TiO2 NPs based MHP-SCs exhibit an outstanding power conversion efficiency (PCE) of 21.20% attributed to facilitated charge extraction and reduced defect density. Furthermore, by implementing low-temperature solution-processable Acac-TiO2 NPs, we successfully demonstrated a remarkable PCE of 18.01% along with excellent mechanical stability, retaining 74.5% and 67.1% PCE after 5000 bending cycles in outward and inward directions from Acac-TiO2 NPs based MHP-SCs on a flexible substrate. CONFLICT OF INTEREST The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Open Research DATA AVAILABILITY STATEMENT Research data are not shared. Supporting Information Filename Description er8586-sup-0001-supinfo.pdfPDF document, 764.8 KB APPENDIX S1 Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES 1Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 2014; 7(3): 982-988. 10.1039/C3EE43822H 2Xing G, Mathews N, Lim SS, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014; 13(5): 476-480. doi:10.1038/nmat3911 3Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown ch3nh3pbi3 single crystals. Science. 2015; 347(6225): 967-970. doi:10.1126/science.aaa5760 4Kovalenko Maksym V, Protesescu L, Bodnarchuk Maryna I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science. 2017; 358(6364): 745-750. doi:10.1126/science.aam7093 5Zhao Y, Zhu K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev. 2016; 45(3): 655-689. 10.1039/C4CS00458B 6Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131(17): 6050-6051. doi:10.1021/ja809598r 7 NREL Best research efficiency chart. Accessed 2022. https://www.nrel.gov/pv/cell-efficiency.html 8Foo S, Thambidurai M, Senthil Kumar P, Yuvakkumar R, Huang Y, Dang C. Recent review on electron transport layers in perovskite solar cells. Int J Energy Res. 2022:1-11. doi:10.1002/er.7958 9Choi J, Song S, Hörantner MT, Snaith HJ, Park T. Well-defined nanostructured, single-crystalline tio2 electron transport layer for efficient planar perovskite solar cells. ACS Nano. 2016; 10(6): 6029-6036. doi:10.1021/acsnano.6b01575 10Kim M, Choi I-W, Choi SJ, et al. Enhanced electrical properties of li-salts doped mesoporous tio2 in perovskite solar cells. Joule. 2016; 5(3): 659-672. doi:10.1016/j.joule.2021.02.007 11Jung EH, Jeon NJ, Park EY, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature. 2019; 567(7749): 511-515. doi:10.1038/s41586-019-1036-3 12Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on sno2 electrodes. Nature. 2021; 598(7881): 444-450. doi:10.1038/s41586-021-03964-8 13Yoo JJ, Seo G, Chua MR, et al. Efficient perovskite solar cells via improved carrier management. Nature. 2021; 590(7847): 587-593. doi:10.1038/s41586-021-03285-w 14Kim M, Jeong J, Lu H, et al. Conformal quantum dot–sno2 layers as electron transporters for efficient perovskite solar cells. Science. 2022; 375(6578): 302-306. doi:10.1126/science.abh1885 15Wang Z, Zhu X, Feng J, et al. Antisolvent- and annealing-free deposition for highly stable efficient perovskite solar cells via modified zno. Adv Sci. 2021; 8(13):2002860. doi:10.1002/advs.202002860 16Wang P, Wang H, Mao Y, et al. Organic ligands armored zno enhances efficiency and stability of cspbi2br perovskite solar cells. Adv Sci. 2020; 7(21):2000421. doi:10.1002/advs.202000421 17Chen C, Jiang Y, Wu Y, et al. Low-temperature-processed wox as electron transfer layer for planar perovskite solar cells exceeding 20% efficiency. Sol RRL. 2020; 4(4):1900499. doi:10.1002/solr.201900499 18Wu F, Lu S, Hu C, et al. A smart way to prepare solution-processed and annealing-free pcbm electron transporting layer for perovskite solar cells. Adv Sustain Syst. 2022;2200212. doi:10.1002/adsu.202200212 19He X, Liu C, Yang Y, et al. High-efficiency and uv-stable flexible perovskite solar cells enabled by an alkaloid-doped c60 electron transport layer. J Mater Chem C. 2020; 8(30): 10401-10407. 10.1039/D0TC02438D 20Kim M, Kim G-H, Lee TK, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule. 2019; 3(9): 2179-2192. doi:10.1016/j.joule.2019.06.014 21Heo JH, Lee DS, Shin DH, Im SH. Recent advancements in and perspectives on flexible hybrid perovskite solar cells. J Mater Chem A. 2019; 7(3): 888-900. 10.1039/C8TA09452G 22Wu Y, Yang X, Chen H, et al. Highly compact tio2layer for efficient hole-blocking in perovskite solar cells. Appl Phys Express. 2014; 7(5):052301. doi:10.7567/apex.7.052301 23Di Giacomo F, Zardetto V, D'Epifanio A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and uv-irradiated tio2 scaffolds on plastic substrates. Adv Energy Mater. 2015; 5(8):1401808. doi:10.1002/aenm.201401808 24Mali SS, Hong CK, Inamdar AI, Im H, Shim SE. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered tio2 electron transporting layers. Nanoscale. 2017; 9(9): 3095-3104. 10.1039/C6NR09032J 25Lv Y, Xu P, Ren G, et al. Low-temperature atomic layer deposition of metal oxide layers for perovskite solar cells with high efficiency and stability under harsh environmental conditions. ACS Appl Mater Interfaces. 2018; 10(28): 23928, 23937-23937. doi:10.1021/acsami.8b07346 26Zardetto V, di Giacomo F, Lifka H, et al. Surface fluorination of ald tio2 electron transport layer for efficient planar perovskite solar cells. Adv Mater Interfaces. 2018; 5(9):1701456. doi:10.1002/admi.201701456 27Zhu H, Zhang T-H, Wei Q-Y, et al. Preparation of tio2 electron transport layer by magnetron sputtering and its effect on the properties of perovskite solar cells. Energy Rep. 2022; 8: 3166-3175. doi:10.1016/j.egyr.2022.02.068 28Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ Sci. 2014; 7(3): 1142-1147. 10.1039/C3EE43707H 29You MS, Heo JH, Park JK, Moon SH, Park BJ, Im SH. Low temperature solution processable tio2 nano-sol for electron transporting layer of flexible perovskite solar cells. Sol Energy Mater Sol Cells. 2019; 194: 1-6. doi:10.1016/j.solmat.2019.02.003 30He J, Bi E, Tang W, et al. Low-temperature soft-cover-assisted hydrolysis deposition of large-scale tio2 layer for efficient perovskite solar modules. Nano-Micro Lett. 2018; 10(3): 49. doi:10.1007/s40820-018-0203-7 31Ko Y, Kim Y, Lee C, et al. Self-aggregation-controlled rapid chemical bath deposition of sno2 layers and stable dark depolarization process for highly efficient planar perovskite solar cells. ChemSusChem. 2020; 13(16): 4051-4063. doi:10.1002/cssc.202000501 32Ren Z, Wang N, Wei P, Cui M, Li X, Qin C. Ultraviolet-ozone modification on tio2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells. Chem Eng J. 2018; 393:124731. doi:10.1016/j.cej.2020.124731 33Jiang J, Jia X, Wang S, et al. High-performance flexible perovskite solar cells with effective interfacial optimization processed at low temperatures. ChemSusChem. 2018; 11(23): 4131-4138. doi:10.1002/cssc.201801978 34Liu X, Wu J, Li G, et al. Defect control strategy by bifunctional thioacetamide at low temperature for highly efficient planar perovskite solar cells. ACS Appl Mater Interfaces. 2020; 12(11): 12883-12891. doi:10.1021/acsami.0c00146 35Zhang M, Li T, Zheng G, et al. An amino-substituted perylene diimide polymer for conventional perovskite solar cells. Mater Chem Front. 2020; 1(10): 2078-2084. 10.1039/C7QM00221A 36Zhou Y-Q, Wu B-S, Lin G-H, et al. Interfacing pristine c60 onto tio2 for viable flexibility in perovskite solar cells by a low-temperature all-solution process. Adv Energy Mater. 2018; 8(20):1800399. doi:10.1002/aenm.201800399 37Cai F, Yang L, Yan Y, et al. Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed tio2 layer. J Mater Chem A. 2017; 5(19): 9402-9411. 10.1039/C7TA02317K 38Nakagawa K, Wang F, Murata Y, Adachi M. Effect of acetylacetone on morphology and crystalline structure of nanostructured tio2 in titanium alkoxide aqueous solution system. Chem Lett. 2005; 34(5): 736-737. doi:10.1246/cl.2005.736 39Schubert U. Chemical modification of titanium alkoxides for sol–gel processing. J Mater Chem. 2005; 15(35-36): 3701-3715. 10.1039/B504269K 40Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of tio2 precursor prepared by the sol-gel method using metal alkoxide. J Mater Sci. 1994; 29(6): 1617-1622. doi:10.1007/BF00368935 41Liu B, Khare A, Aydil ES. Synthesis of single-crystalline anatase nanorods and nanoflakes on transparent conducting substrates. ChemComm. 2012; 48(68): 8565-8567. 10.1039/C2CC33750A 42Li W, Liang R, Hu A, Huang Z, Zhou YN. Generation of oxygen vacancies in visible light activated one-dimensional iodine tio2 photocatalysts. RSC Adv. 2014; 4(70): 36959-36966. 10.1039/C4RA04768K 43Suh MW, Lee SJ, You MS, Park SB, Im SH. Non-corroding α-alumina@tio2 core–shell nanoplates appearing metallic gold in colour. RSC Adv. 2015; 5(70): 56954-56958. 10.1039/C5RA07784B 44Almeida LA, Habran M, dos Santos Carvalho R, et al. The influence of calcination temperature on photocatalytic activity of tio2-acetylacetone charge transfer complex towards degradation of nox under visible light. Catalysts. 2020; 10(12): 1463. doi:10.3390/catal10121463 45Houthuijs KJ, Martens J, Arranja AG, Berden G, Nijsen JFW, Oomens J. Characterization of holmium(iii)-acetylacetonate complexes derived from therapeutic microspheres by infrared ion spectroscopy. Phys Chem Chem Phys. 2020; 22(27): 15716-15722. 10.1039/D0CP01890B 46Madhusudan Reddy K, Manorama SV, Ramachandra Reddy A. Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys. 2003; 78(1): 239-245. doi:10.1016/S0254-0584(02)00343-7 47Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater. 2012; 24(40): 5408-5427. doi:10.1002/adma.201201630 48Woo S, Hyun Kim W, Kim H, Yi Y, Lyu H-K, Kim Y. 8.9% single-stack inverted polymer solar cells with electron-rich polymer nanolayer-modified inorganic electron-collecting buffer layers. Adv Energy Mater. 2012; 4(7):1301692. doi:10.1002/aenm.201301692 49Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low–work function electrodes for organic electronics. Science. 2012; 336(6079): 327-332. doi:10.1126/science.1218829 50Luo X, Gao Y, Zhu P, et al. Record photocurrent density over 26 ma cm−2 in planar perovskite solar cells enabled by antireflective cascaded electron transport layer. Sol RRL. 2012; 4(7):2000169. doi:10.1002/solr.202000169 51Bharti B, Kumar S, Lee H-N, Kumar R. Formation of oxygen vacancies and ti3+ state in tio2 thin film and enhanced optical properties by air plasma treatment. Sci Rep. 2016; 6(1):32355. doi:10.1038/srep32355 52Xu Y, Duan J, Yang X, et al. Lattice-tailored low-temperature processed electron transporting materials boost the open-circuit voltage of planar cspbbr3 perovskite solar cells up to 1.654 v. J. Mater Chem A. 2016; 8(23): 11859-11866. 10.1039/D0TA04366D 53Ganharul GKQ, Tofanello A, Bonadio A, et al. Disclosing the hidden presence of ti3+ ions in different tio2 crystal structures synthesized at low temperature and photocatalytic evaluation by methylene blue photobleaching. J Mater Res. 2021; 36(16): 3353-3365. doi:10.1557/s43578-021-00342-y 54Karthik P, Vinesh V, Mahammed Shaheer AR, Neppolian B. Self-doping of ti3+ in tio2 through incomplete hydrolysis of titanium (iv) isopropoxide: An efficient visible light sonophotocatalyst for organic pollutants degradation. Appl Catal A Gen. 2021; 585:117208. doi:10.1016/j.apcata.2019.117208 55Zhang Y, Payne DT, Pang CL, et al. State-selective dynamics of tio2 charge-carrier trapping and recombination. J Phys Chem Lett. 2019; 10(17): 5265-5270. doi:10.1021/acs.jpclett.9b02153 56Habisreutinger SN, Noel NK, Snaith HJ. Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett. 2018; 3(10): 2472-2476. doi:10.1021/acsenergylett.8b01627 57Tumen-Ulzii G, Matsushima T, Klotz D, et al. Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun Mater. 2020; 1(1): 31. doi:10.1038/s43246-020-0028-z 58Heo JH, Lee DS, Zhang F, et al. Super flexible transparent conducting oxide-free organic–inorganic hybrid perovskite solar cells with 19.01% efficiency (active area = 1 cm2). Sol RRL. 2020; 5(12):2100733. doi:10.1002/solr.202100733 59Zhu J, Park S, Gong OY, et al. Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules. Energy Env Sci. 2021; 14(9): 4903-4914. 10.1039/D1EE01440D 60Xu C, Zuo L, Hang P, et al. Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. J Mater Chem A. 2022; 10(18): 9971-9980. 10.1039/D2TA01349E 61Vickers ET, Graham TA, Chowdhury AH, et al. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands. ACS Energy Lett. 2018; 3(12): 2931-2939. doi:10.1021/acsenergylett.8b01754 62Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV. Quantum dot solar cells. Tuning photoresponse through size and shape control of cdse−tio2 architecture. J Am Chem Soc. 2008; 130(12): 4007-4015. doi:10.1021/ja0782706 63Ning Z, Tian H, Qin H, et al. Wave-function engineering of cdse/cds core/shell quantum dots for enhanced electron transfer to a tio2 substrate. J Phys Chem C. 2008; 114(35): 15184-15189. doi:10.1021/jp102978g 64Jiang K, Wang J, Wu F, et al. Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells. Adv Mater. 2020; 32(16):1908011. doi:10.1002/adma.201908011 65Guerrero A, You J, Aranda C, et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano. 2016; 10(1): 218-224. doi:10.1021/acsnano.5b03687 66Arabpour Roghabadi F, Mansour Rezaei Fumani N, Alidaei M, Ahmadi V, Sadrameli SM. High power uv-light irradiation as a new method for defect passivation in degraded perovskite solar cells to recover and enhance the performance. Sci Rep. 2019; 9(1): 9448. doi:10.1038/s41598-019-45756-1 67Zou M, Xia X, Jiang Y, et al. Strengthened perovskite/fullerene interface enhances efficiency and stability of inverted planar perovskite solar cells via a tetrafluoroterephthalic acid interlayer. ACS Appl Mater Interfaces. 2019; 11(36): 33515-33524. doi:10.1021/acsami.9b12961 Citing Literature Volume46, Issue15December 2022Pages 22819-22831 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨忠完成签到,获得积分10
1秒前
暴龙战士图图完成签到,获得积分10
6秒前
12秒前
天天快乐应助明理的紫南采纳,获得10
13秒前
非品邑完成签到 ,获得积分10
15秒前
奋豆完成签到,获得积分10
15秒前
小巧的怜晴完成签到 ,获得积分10
16秒前
18秒前
24秒前
蓝天碧海小西服完成签到,获得积分0
27秒前
jjj发布了新的文献求助10
29秒前
派大星和海绵宝宝完成签到,获得积分10
30秒前
寂寞的妙旋完成签到,获得积分10
32秒前
阝火火完成签到,获得积分10
35秒前
慕青应助jjj采纳,获得10
37秒前
平常的凡白完成签到 ,获得积分10
38秒前
大模型应助科研通管家采纳,获得10
39秒前
39秒前
英姑应助科研通管家采纳,获得10
39秒前
勤劳影子完成签到 ,获得积分10
40秒前
江上清风游完成签到,获得积分10
47秒前
内向的小凡完成签到,获得积分10
48秒前
mynuongga完成签到,获得积分10
56秒前
秋水完成签到,获得积分10
58秒前
思源应助DY采纳,获得10
1分钟前
立方米完成签到 ,获得积分10
1分钟前
小俊完成签到,获得积分10
1分钟前
1分钟前
二两白茶完成签到 ,获得积分10
1分钟前
1分钟前
唯美发布了新的文献求助10
1分钟前
hellogo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
今后应助hellogo采纳,获得10
1分钟前
思源应助Rui采纳,获得10
1分钟前
bie123发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2392626
求助须知:如何正确求助?哪些是违规求助? 2097032
关于积分的说明 5283726
捐赠科研通 1824648
什么是DOI,文献DOI怎么找? 909959
版权声明 559943
科研通“疑难数据库(出版商)”最低求助积分说明 486276