Prediction of shield machine posture using the GRU algorithm with adaptive boosting: A case study of Chengdu Subway project

护盾 Boosting(机器学习) 算法 工程类 结构工程 计算机科学 人工智能 地质学 岩石学
作者
Haohan Xiao,Zuyu Chen,Ruilang Cao,Yuxin Cao,Lijun Zhao,Yunjie Zhao
出处
期刊:Transportation geotechnics [Elsevier BV]
卷期号:37: 100837-100837 被引量:37
标识
DOI:10.1016/j.trgeo.2022.100837
摘要

Shield machine deviation from the design tunnel axis (DTA) causes dislocation and damage of the segments and may lead to poor tunnel quality, which is a primary concern in tunnel construction. Therefore, it is necessary to predict the shield machine posture dynamically and assist the operator in adjusting the tunneling parameters in advance. Based on the tunneling data of five earth pressure balance (EPB) shield machines, a novel method for predicting shield machine posture, mainly composed of adaptive boosting (AdaBoost) and gated recurrent unit (GRU) algorithms, is proposed in this paper. In parallel, a data preprocessing algorithm is developed for the original tunneling parameters, including three phases: data extraction, data compilation, and data normalization. The hyperparameters of the model were determined using the grid search and cross-validation technology. The actual deviation case test shows that once the model predicts that the shield machine posture will deviate significantly from DTA, it can issue a warning in advance and assist the machine operators in optimizing tunneling parameters for a better trajectory. Then, the model prediction results were compared with the benchmark algorithms. The results reveal that the GRU algorithm is conductive to capture the trend of the time sequence, and the AdaBoost algorithm is beneficial for improving the fitting ability of the regression model. Finally, we found some association rules of tunneling parameters that affect the posture of shield machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的白猫完成签到,获得积分10
刚刚
怕孤独的鹭洋完成签到,获得积分10
1秒前
1秒前
花开富贵发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助150
4秒前
5秒前
科研通AI5应助tianjiu采纳,获得30
6秒前
zhans完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
wanci应助Ortho Wang采纳,获得10
8秒前
情怀应助小羊采纳,获得10
8秒前
kudward发布了新的文献求助10
8秒前
8秒前
8秒前
composite66完成签到,获得积分10
9秒前
甜橙完成签到 ,获得积分10
10秒前
NexusExplorer应助烂漫香菱采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
lkk完成签到,获得积分20
10秒前
11秒前
mao12wang发布了新的文献求助10
12秒前
科研通AI5应助upp采纳,获得10
12秒前
霸气的渊思关注了科研通微信公众号
12秒前
12秒前
Doctor_Peng完成签到,获得积分10
13秒前
阔达的语海完成签到,获得积分10
13秒前
贼拉瘦的美神完成签到,获得积分10
13秒前
Yanxb发布了新的文献求助10
14秒前
chenpiao发布了新的文献求助10
14秒前
14秒前
lant0932发布了新的文献求助10
14秒前
14秒前
123456发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144