Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films

碳化作用 成核 矿化(土壤科学) 化学工程 碳酸盐 纳米技术 材料科学 化学 有机化学 氮气 工程类
作者
Mohammad Javad Abdolhosseini Qomi,Quin R. S. Miller,Siavash Zare,Herbert T. Schaef,John Kaszuba,Kevin M. Rosso
出处
期刊:Nature Reviews Chemistry [Springer Nature]
卷期号:6 (9): 598-613 被引量:25
标识
DOI:10.1038/s41570-022-00418-1
摘要

The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2-H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助韦老虎采纳,获得10
1秒前
刘备发布了新的文献求助10
3秒前
今后应助纯情的老鼠采纳,获得10
4秒前
4秒前
爱因斯坦完成签到,获得积分20
5秒前
希望天下0贩的0应助ZYN采纳,获得10
6秒前
老张完成签到 ,获得积分10
8秒前
10秒前
tengy完成签到,获得积分10
10秒前
害羞的大炮完成签到,获得积分10
14秒前
桥豆麻袋完成签到,获得积分10
14秒前
小二郎应助liquor采纳,获得10
16秒前
18秒前
longzhixin完成签到,获得积分10
19秒前
19秒前
Jemezs发布了新的文献求助10
21秒前
SciGPT应助刘备采纳,获得10
23秒前
科目三应助老实的道罡采纳,获得10
24秒前
秀某完成签到 ,获得积分10
25秒前
25秒前
马上动起来完成签到,获得积分10
28秒前
28秒前
野性的采枫应助Venus采纳,获得10
29秒前
xiao双月完成签到,获得积分10
31秒前
所所应助一一采纳,获得10
32秒前
Victoria完成签到,获得积分10
33秒前
Hello应助Byron采纳,获得10
33秒前
科研通AI2S应助zwenng采纳,获得10
34秒前
Leo完成签到,获得积分10
35秒前
gc完成签到 ,获得积分10
37秒前
39秒前
zg完成签到,获得积分10
39秒前
一一发布了新的文献求助10
40秒前
42秒前
海滨之鹅完成签到,获得积分10
42秒前
无花果应助qwepoi采纳,获得30
42秒前
43秒前
bkagyin应助Ukiss采纳,获得10
43秒前
万能图书馆应助刘可乐采纳,获得10
43秒前
44秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2388773
求助须知:如何正确求助?哪些是违规求助? 2094894
关于积分的说明 5275001
捐赠科研通 1821941
什么是DOI,文献DOI怎么找? 908730
版权声明 559485
科研通“疑难数据库(出版商)”最低求助积分说明 485572