Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films

碳化作用 成核 矿化(土壤科学) 化学工程 碳酸盐 纳米技术 材料科学 化学 有机化学 工程类 氮气
作者
Mohammad Javad Abdolhosseini Qomi,Quin R. S. Miller,Siavash Zare,Herbert T. Schaef,John Kaszuba,Kevin M. Rosso
出处
期刊:Nature Reviews Chemistry [Nature Portfolio]
卷期号:6 (9): 598-613 被引量:84
标识
DOI:10.1038/s41570-022-00418-1
摘要

The calamitous impacts of unabated carbon emission from fossil-fuel-burning energy infrastructure call for accelerated development of large-scale CO2 capture, utilization and storage technologies that are underpinned by a fundamental understanding of the chemical processes at a molecular level. In the subsurface, rocks rich in divalent metals can react with CO2, permanently sequestering it in the form of stable metal carbonate minerals, with the CO2-H2O composition of the post-injection pore fluid acting as a primary control variable. In this Review, we discuss mechanistic reaction pathways for aqueous-mediated carbonation with carbon mineralization occurring in nanoscale adsorbed water films. In the extreme of pores filled with a CO2-dominant fluid, carbonation reactions are confined to angstrom to nanometre-thick water films coating mineral surfaces, which enable metal cation release, transport, nucleation and crystallization of metal carbonate minerals. Although seemingly counterintuitive, laboratory studies have demonstrated facile carbonation rates in these low-water environments, for which a better mechanistic understanding has come to light in recent years. The overarching objective of this Review is to delineate the unique underlying molecular-scale reaction mechanisms that govern CO2 mineralization in these reactive and dynamic quasi-2D interfaces. We highlight the importance of understanding unique properties in thin water films, such as how water dielectric properties, and consequently ion solvation and hydration behaviour, can change under nanoconfinement. We conclude by identifying important frontiers for future work and opportunities to exploit these fundamental chemical insights for decarbonization technologies in the twenty-first century.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Shawn完成签到,获得积分10
刚刚
lzc发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
浮游应助小竹采纳,获得10
2秒前
2秒前
无花果应助Kannan采纳,获得10
2秒前
3秒前
娃哈哈发布了新的文献求助10
4秒前
陈富贵发布了新的文献求助30
4秒前
浮游应助无私的以云采纳,获得10
4秒前
ymxlcfc发布了新的文献求助10
4秒前
4秒前
学术cheems完成签到,获得积分10
5秒前
小蘑菇应助和功耗过高采纳,获得10
6秒前
Pendragon完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助雷家采纳,获得10
7秒前
许七安完成签到 ,获得积分10
7秒前
无限亦竹发布了新的文献求助10
7秒前
7秒前
健壮的凉面完成签到,获得积分10
8秒前
9秒前
传奇3应助zhou采纳,获得10
9秒前
小蘑菇应助Limengyao采纳,获得10
9秒前
10秒前
10秒前
10秒前
hhhh_xt发布了新的文献求助10
11秒前
MINGXING完成签到,获得积分10
11秒前
11秒前
小鲤鱼完成签到,获得积分10
12秒前
12秒前
scwang应助务实水绿采纳,获得10
13秒前
13秒前
Ava应助思维隋采纳,获得10
14秒前
1111123发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183642
求助须知:如何正确求助?哪些是违规求助? 4369861
关于积分的说明 13607883
捐赠科研通 4221715
什么是DOI,文献DOI怎么找? 2315442
邀请新用户注册赠送积分活动 1314022
关于科研通互助平台的介绍 1262893