From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus

能源消耗 消费(社会学) 能量(信号处理) 汽车工程 电能消耗 行驶循环 节能 电能 电动汽车 计算机科学 工程类 电气工程 物理 数学 统计 热力学 社会学 功率(物理) 社会科学
作者
Sirui Nan,Ran Tu,Tiezhu Li,Jian Sun,Haibo Chen
出处
期刊:Energy [Elsevier]
卷期号:261: 125188-125188 被引量:58
标识
DOI:10.1016/j.energy.2022.125188
摘要

Accurate real-time energy consumption prediction of electric buses (EBs) is essential for bus operation and management, which can effectively mitigate the driving range anxiety while reducing the operation cost simultaneously. This paper presents a machine learning-based energy consumption prediction method for EB, which combines driving data with road characteristics data (such as road type), traffic condition (such as peak hour), and meteorology data (such as temperature). The importance of driving behavior features affecting energy consumption is quantitatively revealed by the novel Shapley additive explanation (SHAP). Given the road characteristics, traffic condition and meteorology information, a Long Short-Term Memory (LSTM) network is then used to predict driving microscopic parameters, including speed, acceleration, gas pedal position and brake pedal position. Finally, the instantaneous electricity consumption is predicted using an Extreme Gradient Boosting (XGBoost) model based on the predicted values from the LSTM. The results show that the proposed LSTM-XGBoost model with accurate time series prediction and regression is powerful for efficiently fitting the complex volatility of energy consumption. Moreover, the proposed model chain outperforms other model combinations (such as artificial neural networks and conventional regression methods) in terms of root mean squared error (RMSE = 0.079), mean absolute error (MAE = 0.086) and R-square ( R 2 = 0.814). • A novel energy consumption prediction framework for electric buses is proposed. • The relationship between the energy usage and driving behavior is analyzed. • The time-series driving behavior prediction is integrated in the framework. • An LSTM-XGBoost model is developed to predict short-term energy consumption. • The LSTM-XGBoost model outperforms other prediction models by up to 50%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sll发布了新的文献求助30
1秒前
lxy发布了新的文献求助10
1秒前
大模型应助郭效辰采纳,获得10
1秒前
赘婿应助欢喜柚子采纳,获得10
2秒前
pannalLL完成签到,获得积分20
3秒前
5秒前
爱科研的罗罗完成签到,获得积分10
5秒前
潼潼发布了新的文献求助20
6秒前
6秒前
Stella应助pannalLL采纳,获得10
6秒前
Pweni完成签到,获得积分10
7秒前
大个应助October采纳,获得10
9秒前
NexusExplorer应助ccc采纳,获得10
9秒前
完美世界应助满意妙梦采纳,获得10
10秒前
11秒前
完美世界应助晨屿采纳,获得10
12秒前
bing完成签到,获得积分10
12秒前
山河发布了新的文献求助10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
mmyhn应助科研通管家采纳,获得10
14秒前
中和皇极应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
mmyhn应助科研通管家采纳,获得20
14秒前
dd发布了新的文献求助10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
中和皇极应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得30
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
Lucas应助hhdr采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599199
求助须知:如何正确求助?哪些是违规求助? 4684749
关于积分的说明 14836100
捐赠科研通 4666825
什么是DOI,文献DOI怎么找? 2537800
邀请新用户注册赠送积分活动 1505241
关于科研通互助平台的介绍 1470764