Understanding of the interrelationship between methane production and microorganisms in high-solid anaerobic co-digestion using microbial analysis and machine learning

厌氧消化 微生物 沼气 甲烷 发酵 食品科学 肥料 消化(炼金术) 微生物种群生物学 醋酸 生物能源 木质纤维素生物量 生物量(生态学) 化学 生物化学 农学 生物技术 生物燃料 生物 生态学 细菌 色谱法 有机化学 遗传学
作者
Zhanjiang Pei,Shujun Liu,Zhangmu Jing,Yi Zhang,Jingtian Wang,Jie Liu,Y. Wang,Wenyang Guo,Yeqing Li,Lu Feng,Hongjun Zhou,Guihua Li,Yongming Han,Di Liu,Junting Pan
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:373: 133848-133848 被引量:29
标识
DOI:10.1016/j.jclepro.2022.133848
摘要

Co-digestion of lignocellulosic biomass and animal manure is a common approach to increase the efficiency of methane production, but the niche differentiation and microbial metabolism of the anaerobic digestion (AD) process remain to be determined. To further explore the effect of the interaction between species and their compositional niches, the methane yield and resulting microbial community were determined by machine learning (ML) and 16S rRNA gene sequencing in mixed high-solid anaerobic digestion (HS-AD) with spray-enhanced conditions to explore the internal relationship between physical and chemical parameters and microorganisms and to speculate on the enhancement mechanism of co-digestion. In this study, three ML models (extreme learning machine (ELM), artificial neural network (ANN), and random forest (RF)) were applied to analyse and model AD of dry fermentation. The results showed that the best prediction model, based on ELM, could best predict the material biogas production in this experiment with a mean absolute error (MAE/10) of 0.678 and a coefficient of determination (R 2 ) of 0.9574, whereas the characteristic percentage analysis of the RF model showed that butyric acid , acetic acid, and pH had three important influences on the biogas production values. Meanwhile, the results of high-throughput 16S rRNA gene sequencing and PICRUSt showed that the addition of manure containing ammonia nitrogen improved the metabolism of amino acids, enriched species capable of Clostridiales and Methanosarcinales , promoted the electronic transfer of nutrient metabolism, and thus enhanced AD. Moreover, the co-occurrence network showed that seven niches were differentiated within the HS-AD system to reduce the shock of ammonia nitrogen for methanogens . Overall, microbial analysis and ML can help understand the dynamic processes of methanogenic microorganisms and predict biogas production for the efficient operation of AD. • PICRUSt showed that the addition of manure containing ammonia nitrogen enhanced archaeal methanogenesis. • ELM is the most accurate model for predicting biogas production. • The characteristic factors influencing biogas production can be derived from RF. • Network analysis shows seven niches have differentiated within the HS-AD system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助勤劳柠檬采纳,获得10
1秒前
NSZM980504发布了新的文献求助10
2秒前
2秒前
3秒前
rainhowk完成签到,获得积分10
3秒前
贵为我国的大姐完成签到,获得积分10
4秒前
4秒前
乐观的香菱完成签到,获得积分10
4秒前
5秒前
李健应助重要尔柳采纳,获得10
5秒前
长理学术垃圾完成签到,获得积分20
5秒前
6秒前
6秒前
7秒前
PINk发布了新的文献求助10
7秒前
沉默的金鱼完成签到 ,获得积分10
7秒前
小莹发布了新的文献求助10
8秒前
JamesPei应助csatsd采纳,获得10
9秒前
虫虫发布了新的文献求助10
10秒前
沁香林完成签到,获得积分10
10秒前
10秒前
欣慰的天奇完成签到,获得积分20
10秒前
濮阳元正发布了新的文献求助10
11秒前
小福泥发布了新的文献求助10
11秒前
NSZM980504完成签到,获得积分20
12秒前
13秒前
14秒前
14秒前
14秒前
帅哥完成签到,获得积分10
15秒前
陈宛婷发布了新的文献求助100
15秒前
16秒前
coasting发布了新的文献求助10
16秒前
orixero应助咕噜咕噜采纳,获得30
17秒前
彩色青亦发布了新的文献求助20
17秒前
科研通AI5应助马天垚采纳,获得10
17秒前
frederick发布了新的文献求助10
17秒前
Owen应助ljx666采纳,获得10
19秒前
19秒前
hjyylab应助年三月采纳,获得10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817682
求助须知:如何正确求助?哪些是违规求助? 3360954
关于积分的说明 10410402
捐赠科研通 3079042
什么是DOI,文献DOI怎么找? 1690956
邀请新用户注册赠送积分活动 814272
科研通“疑难数据库(出版商)”最低求助积分说明 768068