VFedCS: Optimizing Client Selection for Volatile Federated Learning

计算机科学 选择(遗传算法) 服务器 分布式计算 数据库 计算机网络 人工智能
作者
Fang Shi,Chunchao Hu,Weiwei Lin,Lisheng Fan,Tiansheng Huang,Wentai Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24995-25010 被引量:20
标识
DOI:10.1109/jiot.2022.3195073
摘要

Federated learning (FL) has shown great potential as a privacy-preserving solution to training a centralized model based on local data from available clients. However, we argue that, over the course of training, the available clients may exhibit some volatility in terms of the client population, client data, and training status. Considering these volatilities, we propose a new learning scenario termed volatile federated learning (volatile FL) featuring set volatility, statistical volatility, and training volatility. The volatile client set along with the dynamic of clients' data and the unreliable nature of clients (e.g., unintentional shutdown and network instability) greatly increase the difficulty of client selection. In this article, we formulate and decompose the global problem into two subproblems based on alternating minimization. For an efficient settlement for the proposed selection problem, we quantify the impact of clients' data and resource heterogeneity for volatile FL and introduce the cumulative effective participation data (CEPD) as an optimization objective. Based on this, we propose upper confidence bound-based greedy selection, dubbed UCB-GS, to address the client selection problem in volatile FL. Theoretically, we prove that the regret of UCB-GS is strictly bounded by a finite constant, justifying its theoretical feasibility. Furthermore, experimental results show that our method significantly reduces the number of training rounds (by up to 62%) while increasing the global model's accuracy by 7.51%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whh123发布了新的文献求助10
刚刚
刚刚
3秒前
4秒前
没出门完成签到,获得积分10
5秒前
wysky37发布了新的文献求助10
5秒前
慕青应助王永明采纳,获得10
5秒前
桐桐应助开瑾采纳,获得10
6秒前
haifang完成签到,获得积分10
6秒前
7秒前
9秒前
11秒前
所所应助哈好好哈哈好采纳,获得10
11秒前
彩色的过客完成签到 ,获得积分10
12秒前
13秒前
山月发布了新的文献求助10
13秒前
13秒前
Xinyu应助苏苏苏采纳,获得10
13秒前
竹音完成签到,获得积分10
14秒前
感动秋发布了新的文献求助10
14秒前
tetrakis发布了新的文献求助10
15秒前
15秒前
16秒前
昏睡的咖啡完成签到,获得积分10
19秒前
lvzhechen发布了新的文献求助10
19秒前
壮壮哥哥发布了新的文献求助30
20秒前
王永明发布了新的文献求助10
21秒前
三里墩头应助不加糖采纳,获得10
22秒前
23秒前
23秒前
鹿不羁完成签到 ,获得积分10
24秒前
25秒前
完美晓霜发布了新的文献求助10
25秒前
科研通AI5应助怕黑的凝旋采纳,获得10
25秒前
科研通AI5应助lvzhechen采纳,获得10
26秒前
28秒前
开朗满天发布了新的文献求助10
28秒前
28秒前
29秒前
积极鱼完成签到,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846880
求助须知:如何正确求助?哪些是违规求助? 3389345
关于积分的说明 10556961
捐赠科研通 3109741
什么是DOI,文献DOI怎么找? 1713874
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164