三肽
化学
二肽
色谱法
衍生化
质谱法
肽
生物化学
作者
Xin Lü,Peng Dou,Chao Li,Fujian Zheng,Lina Zhou,Xiaoyu Xie,Zixuan Wang,Guowang Xu
标识
DOI:10.1021/acs.jproteome.3c00002
摘要
Small peptides such as dipeptides and tripeptides show various biological activities in organisms. However, methods for identifying dipeptides/tripeptides from complex biological samples are lacking. Here, an annotation strategy involving the derivatization of dipeptides and tripeptides via dansylation was suggested based on liquid chromatography-mass spectrometry (LC-MS) and iterative quantitative structure retention relationship (QSRR) to choose dipeptides/tripeptides by using a small number of standards. First, the LC-autoMS/MS method and initial QSRR model were built based on 25 selected grid-dipeptides and 18 test-dipeptides. To achieve high-coverage detection, dipeptide/tripeptide pools containing abundant dipeptides/tripeptides were then obtained from four dansylated biological samples including serum, tissue, feces, and soybean paste by using the parameter-optimized LC-autoMS/MS method. The QSRR model was further optimized through an iterative train-by-pick strategy. Based on the specific fragments and tR tolerances, 198 dipeptides and 149 tripeptides were annotated. The dipeptides at lower annotation levels were verified by using authentic standards and grid-correlation analysis. Finally, variation in serum dipeptides/tripeptides of three different liver diseases including hepatitis B infection, liver cirrhosis, and hepatocellular carcinoma was characterized. Dipeptides with N-prolinyl, C-proline, N-glutamyl, and N-valinyl generally increased with disease severity. In conclusion, this study provides an efficient strategy for annotating dipeptides/tripeptides from complex samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI