Intelligent Reflecting Surface Enabled Fingerprinting-Based Localization With Deep Reinforcement Learning

计算机科学 强化学习 无线 传输(电信) 人工智能 协议(科学) 实时计算 接收信号强度指示 电信 医学 替代医学 病理
作者
Yuhao Wang,Ivan Wang‐Hei Ho,Shuowen Zhang,Yuhong Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (10): 13162-13172 被引量:3
标识
DOI:10.1109/tvt.2023.3275581
摘要

Intelligent reflecting surface (IRS) is considered a promising solution to manipulate the radio frequency transmission environment in the sixth-generation (6G) wireless systems. However, little attention was received by IRS-aided localization techniques. Among range-free wireless localization strategies, received signal strength indicator (RSSI) fingerprinting-based technique is preferred since it can be easily accessed. Inspired by these and the tremendous success of deep reinforcement learning (DRL), we propose an IRS-enabled fingerprinting-based localization methodology with the aid of DRL. Specifically, we firstly propose an IRS-enabled fingerprinting-based localization system. In this system, RSSI lists are created by periodic IRS configurations and pre-collected as database. When a request of localization from a receiver is sent to the server, the database is compared with the online-measured RSSI data to identify the best receiver position estimate using the nearest neighbor algorithm. In addition, we develop a DRL-based IRS configuration selector to identify the most qualified IRS configurations so as to minimize the localization error. We also propose a communication protocol for the operation of the proposed localization methodology. Extensive simulation under different circumstances have been conducted and the results indicate that the localization accuracy scales with the number of IRS configurations. With the aid of DRL, the localization accuracy is further boosted by more than 40% as compared with previous work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贴贴超人发布了新的文献求助10
2秒前
岁月轮回发布了新的文献求助10
3秒前
6秒前
混子完成签到,获得积分10
6秒前
yhnsag完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助岁月轮回采纳,获得10
7秒前
华仔应助岁月轮回采纳,获得10
7秒前
KL完成签到,获得积分10
9秒前
11秒前
Qiao发布了新的文献求助10
11秒前
慕青应助Mason采纳,获得10
11秒前
贴贴超人完成签到,获得积分10
11秒前
llllllb发布了新的文献求助10
12秒前
kkk发布了新的文献求助10
12秒前
Tayzon完成签到 ,获得积分10
12秒前
momo完成签到,获得积分10
16秒前
HWei完成签到,获得积分10
18秒前
英俊的铭应助饺子生面包采纳,获得10
20秒前
21秒前
怕孤独的忆南完成签到,获得积分10
23秒前
24秒前
西西完成签到,获得积分10
27秒前
李爱国应助淡淡夕阳采纳,获得10
28秒前
zhu完成签到,获得积分10
28秒前
科研通AI5应助yah采纳,获得10
28秒前
29秒前
33秒前
Qiao完成签到,获得积分10
33秒前
桐桐应助西西采纳,获得10
34秒前
35秒前
Akim应助夜雨时采纳,获得10
37秒前
莫氓完成签到,获得积分10
38秒前
38秒前
39秒前
liu bo完成签到,获得积分10
39秒前
聪明的泡面完成签到 ,获得积分10
40秒前
笨笨芯发布了新的文献求助10
41秒前
脑洞疼应助dd99081采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563